# Little White Oak Stream Restoration Site

# Polk County, North Carolina

CONTRACT # D06027-B



Prepared For:



Ecosystem Enhancement Program Department of Environment and Natural Resources 1652 Mail Service Center Raleigh, NC 27699-1652

# **RESTORATION PLAN**

March 21, 2007

Prepared By:

Mulkey Engineers and Consultants 6750 Tryon Road Cary, North Carolina 27518 Phone: (919) 851-1912 Fax: (919) 851-1918

Project Manager: Wendee B. Smith Phone: (919) 858-1833

Project Engineer: Scott Hunt (919) 858-1825 Phone:

# LITTLE WHITE OAK CREEK STREAM RESTORATION SITE RESTORATION PLAN

| Execut | ive Summary                                                 | 1  |
|--------|-------------------------------------------------------------|----|
| 1.0    | Project Site Identification and Location                    | 2  |
| 1.1    | Directions to Project Site                                  |    |
| 1.2    | USGS Hydrologic Unit Code and NCDWQ River Basin Designation | 2  |
| 2.0    | Watershed Characterization                                  | 3  |
| 2.1    | Drainage Area                                               | 3  |
| 2.2    | Surface Water Classification/Water Quality                  | 3  |
| 2.3    | Physiography, Geology, and Soils                            | 4  |
| 2.4    | Historical Land Use and Development Trends                  | 4  |
| 2.5    | Endangered/Threatened Species                               | 5  |
| 2.5.1  |                                                             | 5  |
|        | .1.1 Dwarf-flowered heartleaf                               | 5  |
|        | .1.2 Small-whorled pogonia                                  | 5  |
|        | .1.3 White irisette                                         | 6  |
| 2.5.2  | Federal Designated Critical Habitat                         | 7  |
| 2.5.3  | Federal Species of Concern and State Listed Species         | 7  |
| 2.6    | Cultural Resources                                          | 9  |
| 2.7    | Potential Concerns                                          | 9  |
| 2.7.1  | Property Ownership and Boundary                             | 9  |
| 2.7.2  | Site Access                                                 | 9  |
| 2.7.3  | Utilities                                                   | 10 |
| 2.7.4  | FEMA/Hydrologic Trespass                                    | 10 |
| 3.0    | Project Site Streams (Existing Conditions)                  | 10 |
| 3.1    | Channel Classification                                      | 11 |
| 3.2    | Discharge                                                   | 12 |
| 3.3    | Channel Morphology (Pattern, Dimension, and Profile)        | 12 |
| 3.4    | Channel Stability Assessment                                | 12 |
| 3.5    | Bankfull Verification                                       | 13 |
| 3.6    | Vegetation                                                  | 13 |
| 4.0    | Reference Stream                                            | 14 |
| 4.1    | Watershed Characterization                                  | 14 |
| 4.2    | Channel Classification                                      | 14 |
| 4.3    | Discharge                                                   | 14 |
| 4.4    | Channel Morphology (Pattern, Dimension, and Profile)        | 14 |
| 4.5    | Channel Stability Assessment                                | 15 |
| 4.6    | Bankfull Verification                                       | 15 |
| 4.7    | Vegetation                                                  | 15 |
| 5.0    | Project Site Restoration Plan                               | 15 |
| 5.1    | Restoration Project Goals and Objectives                    | 15 |
| 5.1.1  | Design Channel Classification                               | 16 |
| 5.1.2  | Target Buffer Communities                                   | 17 |
| 5.2    | Sediment Transport Analysis                                 | 18 |

| 5.2.1 | Methodology                                    | 18 |
|-------|------------------------------------------------|----|
| 5.2.2 | Calculations and Discussions                   | 19 |
| 5.3   | HEC-RAS Analysis                               | 19 |
| 5.3.1 | No-rise, LOMR, CLOMR                           | 19 |
| 5.3.2 | Hydrologic Trespass                            | 19 |
| 5.4   | Stormwater Best Management Practices           | 20 |
| 5.4.1 | Narrative of Site Specific Stormwater Concerns | 20 |
| 5.4.2 | Device Description and Applications            | 20 |
| 5.5   | Soil Restoration                               | 20 |
| 5.5.1 | Soil Preparation and Amendment                 | 20 |
| 5.6   | Natural Plant Community Restoration            | 20 |
| 5.6.1 | Plant Community Restoration                    | 21 |
| 5.6.2 | On-site Invasive Species Management            | 21 |
| 6.0   | Performance Criteria                           | 21 |
| 6.1   | Streams                                        | 21 |
| 6.2   | Vegetation                                     | 22 |
| 6.3   | Schedule/Reporting                             | 22 |
| 7.0   | References                                     | 23 |

#### 7.0 References

#### 8.0 Tables

- Table 2 Drainage Areas
- Table 3 Land Use
- Table 4 Morphological Tables
- BEHI/NBS and Sediment Export for Project Stream Site Table 5
- BEHI/NBS and Sediment Export for Reference Stream Site Table 6
- Pfankuch Summary Table 7
- Table 8 Design Vegetative Communities

#### 9.0 Figures

| Figure 1 V | icinity Map |
|------------|-------------|
|------------|-------------|

- Figure 2 Watershed Map
- Figure 3 Soils Map
- Figure 4 **Existing Hydrologic Features**
- Figure 5 Reference Site Vicinity Map
- Figure 6 Reference Site Watershed Map
- Figure 7 Reference Site Soils Map
- Figure 8 **Reference Site Vegetative Communities**

#### 10.0 **Design Sheets**

#### 11.0 Appendices

Appendix 1 Site Photographs

Appendix 2 NCDWQ Stream Classification Forms

Appendix 3 Reference Site Photographs

Appendix 4 Reference Site Stream Classification Forms

Appendix 5 HEC-RAS Analysis

Appendix 6 Bankfull Verification

Appendix 7 Sediment Transport

# **Executive Summary**

As part of the Ecosystem Enhancement Program's (EEP) Request for Proposal (RFP) issued October 26, 2005, Mulkey, Inc. (Mulkey) submitted the Little White Oak Creek Site (LWO, Site) for consideration.

The Little White Oak Creek Site is a large, stream restoration and conservation easement acquisition project to create a contiguous, high quality ecosystem restoration project. The project is located in Polk County, North Carolina. The LWO Site is situated southeast of the Town of Mills Springs and northeast of the intersection of NC Highway 9 and US 74 (Exit 167). The Site is within the USGS 14 Digit HUC 03050105030010, the USGS 14 Digit HUC 03050105, and NC Division of Water Quality (DWQ) subbasin 03-08-02.

The LWO Site lies within two parcels that have historically been used for pasture and forest land. Cattle and other land uses have resulted in substantial degradation to the stream throughout the Site for the past 50 years. There are approximately 200 grazing cattle and horses currently utilizing the pastures. The livestock have not been fenced from the streams at any location within the Site. This continual livestock access to the streams has resulted in substantial erosion along the stream banks, incision of the channels, channel widening in some areas, and poor bed form diversity throughout the Site, as well as degraded water quality due to the introduction of fecal matter into the stream system. The property owner explained that many of the streams at the Site, particularly the smaller tributaries, were historically maintained through channelization, dredging, and clearing of the riparian buffer. Fecal and nutrient contamination to streams within the Site is currently a concern.

#### Project goals and objectives

The goal of the Little White Oak Creek Stream Restoration Site are as follows:

- To improve water quality for the project stream reaches, as well as downstream reaches
- To reduce the rate of bank erosion along the project stream reaches
- To better attenuate flood flows
- To enhance wildlife habitat at the project site

Theses goal will be met through the following objectives:

- By using natural channel design to restore stable pattern, dimension, and profile for the project stream reaches
- By reestablishing a flood plain or connecting the stream back to its historic floodplain, or a combination of both, for each project stream reach
- By creating or restoring floodplain features such as vernal pools, off channel ponds, or riparian wetlands
- By increasing the amount of instream habitation through the addition of rock and wood structures, the
- By re-establishing a more natural riparian buffer, thereby reintroducing shading, cover areas, and travel corridors.

How these goals will be met through the described objectives are discussed in more detail in the following paragraphs.

The goal of improving water quality will be accomplished by meeting two objectives: first, by reducing sedimentation, and second by restoring riparian buffers. Restoring stable stream pattern, dimension, and

profile will reduce sedimentation to the stream by preventing the mass wasting of stream banks currently prevalent at the Site. All of the stream restoration design and construction will follow methodologies consistent with natural channel design. Our proposed restoration plan includes re-establishing a floodplain and forested riparian buffer which will both provide an area of filtration for surface and ground water from the adjacent, heavily grazed pastures. The floodplain will be re-established by raising the existing streambed elevation in order to reconnect the streams to their historic floodplains, or in the cases where this is not feasible due to site constraints, through the construction of bankfull benches. By reconnecting the streams to their original floodplains or by creating improved floodplains through bankfull bench construction, the streams are provided a much larger area to attenuate flood flows. The sections of abandoned channel that will be left open and modified to create vernal pools, off channel ponds, or riparian wetlands will also provide additional flood storage.

The second goal will be to enhance instream and terrestrial wildlife habitat and will be achieved by increasing the amount and quality of habitat within the stream and within the riparian buffer. The existing condition of the streams and riparian buffers at the site provide limited available habitat for aquatic and terrestrial species in and around the stream. The objective is to utilize the proposed restoration site to enhance habitat within the stream by restoring natural channel stability and through the introduction of instream boulder and wood structures. The restoration of a forested riparian buffer will also provide stream shading, as well as cover areas and travel corridors that are vital for traveling, foraging, loafing and nesting for many wildlife species. The Site provides an excellent opportunity to restore and preserve a substantial riparian zone on lands that are currently being used for pasture. The riparian buffers, at least 50 feet in width, will be established along both sides of all of the streams at the Site. These buffers will be fenced to prevent future cattle intrusion.

# Amount of existing and designed stream

Mulkey has acquired 55.3 acres of conservation easement for the State of North Carolina to provide buffer for the stream site. The existing stream footage within the Site totaled 16,278 linear feet. A design has been completed using parameters from reference reach data which anticipated 18,200 linear feet of potential restoration. Mulkey anticipates that this project will generate a minimum of 18,200 Stream Mitigation Units (SMUs). The SMUs are determined by using the formula [SMU = (Restoration/1.0) + (Enhancement Level II/2.5) + (Preservation/5.0)] as noted in the EEP RFP.

# 1.0 <u>Project Site Identification and Location</u>

The Little White Oak Creek Stream Restoration Site is located in Polk County approximately 2.5 miles east/southeast from the Community of Mill Springs along NC Highway 9 South, and approximately 0.5 mile northwest from the intersection of NC Highway 9 South and US Highway 74. The Site is situated in the Broad River Basin 8-digit cataloging unit of 03050105 and the 14-digit cataloging unit 03050105030010. Mulkey has purchased an easement covering 55.3 acres, which will encompass the streams and associated buffers at the Site. (Figure 1)

# **1.1** Directions to Project Site

The Little White Oak Site is located 0.6 mile north of Exit 167 at the intersection of NC Highway 9 and US 74. The Site is approximately 78 miles from Charlotte and approximately 47 miles from Asheville.

# 1.2 USGS Hydrologic Unit Code and NCDWQ River Basin Designations

The Little White Oak Creek Stream Restoration Site is located within the Broad River Basin, 8-digit cataloging unit of 03050105 and the 14-digit cataloging unit 03050105030010. The Site is also within the

NC Division of Water Quality Subbasin 03-08-02. The Little White Oak Creek Stream Restoration Site consists of first, second, third, and fourth order streams which generally flow eastward across the Site and exit the Site as the main channel of Little White Oak Creek. This Site is not located in a water supply watershed. (Figure 2)

# 2.0 <u>Watershed Characterization</u>

It is estimated that 78% of the land cover within the watershed is forest or wetland. Although urbanization is dramatically increasing in the area, it is estimated there is **currently 2% of urbanized** (**impervious**) **area** in the watershed. The remaining land cover is pasture and cultivated cropland.

Topography at the Site consists of gently sloping hills and valleys along with broad, flat floodplain areas adjacent to the South Fork Little White Oak Creek and Little White Oak Creek. The elevations of the Site range 885 feet above mean sea level to approximately 875 feet above mean sea level on the Little White Oak Creek and the tributaries range from 905 feet above mean sea level and 875 feet above mean sea level.

The Site is located within the Southern Inner Piedmont Ecoregion. This ecoregion is denoted as dissected irregular plains, some low to high hills, ridges, and isolated monadnocks; low to moderate gradient streams with mostly cobble, gravel, and sandy substrates.

# 2.1 Drainage Area

The two main streams at the Site are third order streams, Little White Oak Creek at the north end of the Site and South Branch Little White Oak Creek at the south end of the Site. These two streams converge at the center of the Site as Little White Oak Creek to form a fourth order stream. The Site also includes one second order unnamed tributary and five first order unnamed tributaries. The headwaters of the Little White Oak Creek are located southeast of Lake Adger and north and east of Little White Oak Mountain then flow in an easterly direction through the project site. The drainage area of Little White Oak Creek as it enters the project area is approximately 3,400 acres (5.3 square miles). The headwaters of the South Branch Little White Oak Creek. The drainage area of the South Branch of the Little White Oak Creek as it enters the project area is approximately 2,560 acres (4.0 square miles). The overall drainage area of the project is 7,124 acres (11.1 square miles). (Figure 2)

# 2.2 Surface Water Classification / Water Quality

Little White Oak Creek has been identified by the Division of Water Quality as use classification C which denotes uses for fresh water aquatic life, secondary recreation. Little White Oak Creek flows into White Oak Creek approximately four miles downstream of the Site which is also classified as class C waters. The 2003 Broad River Basin Water Quality Plan (Basinwide Plan) identifies water quality parameters for White Oak Creek as supporting its designates uses from its source to its confluence with the Green River. The Basinwide Plan noted habitat degradation as problem parameters and identified agricultural and urban runoff and storm sewers as potential impairment sources. A Benthic Monitoring Station (Station B-8) is located near the confluence of the Green River and White Oak Creek. The Basinwide Plan notes a bioclassification of Good-Fair at this station in 2000. The Little White Oak Creek Stream Restoration Site is not a 303 (d) listed waterbody (NCDWQ, 2004b).

# 2.3 Physiography, Geology and Soils

The Site is located within the Outer Piedmont Belt portion of the Piedmont physiographic region of North Carolina. The geologic composition of the project site is magmatitic granitic gneiss which consists of foliated to massive, granitic to quartz dioritic, biotite gneiss, and amphibolite common. (NCDLR, 1985)

According to the Soil Survey of Polk County, soils within the project area are nearly level or gently sloping soils on floodplains and stream terraces. Most of these areas are found within the western Piedmont region of the county adjacent to major rivers and creeks (Figure 3).

Riverview loam, 0 to 2 percent, (RvA) underlies the majority of the stream channels and floodplain within the Site. Chewacla loam, 0 to 2 percent (ChA), Skyuka clay loam, 2 to 8% eroded (SkB2), and Dogue-Roanoke Complex, 0 to 6%, occurs along several of the floodplain areas and stream terraces. Grover Loam, 25 to 45% slopes is mapped along some of the hillslope areas within the project boundary. Riverview loam is identified as a hydric soil according to the North Carolina Hydric Soils List, August, 2005.

Riverview loam soil series is classified as fine-loamy, mixed, thermic Fluventic Dystrochrepts. These are nearly level, very deep, well drained soils with moderate permeability. Riverview loam soils experience occasional flooding for brief periods.

Chewacla loam soils series is classified as fine-loamy, mixed, thermic Fluaquentic Dystrocrepts. These are nearly level, very deep, somewhat poorly drained soils with moderate permeability. Chewacla loam soils experience occasional flooding for brief periods. Chewacla loam soils are identified as class B hydric soils.

Skyuka clay loam soil series is classified as fine, mixed, thermic Ultic Hapludalfs. These are gently sloping, very deep, well drained soils with moderate permeability. Skyuka clay loam have generally have no flooding potential.

Within the Dogue-Roanoke Complex, the Douge soil series is classified as clayey, mixed, thermic Auqic Hapludults. The Roanoke soil series is classified as clayey, mixed, thermic Typic Endoaquults. Theses soils are nearly level to sloping, very deep, moderately well drained to poorly drained soils with moderately slow to slow permeability. Soils within this complex rarely experience flooding. The Dogue-Roanoke Complex is listed as a hydric soil according to the North Carolina Hydric Soils List, August, 2005.

The Grover Loam soil series is classified as a fine-loamy, micaceous, thermic Typic Hapludult. These soils are steep, very deep, well drained soils with moderate permeability. Due to the steepness of these soils, there is no potential of flooding (Keenan, et al, 1998).

# 2.4 Historical Land Use and Development Trends

The Site has been used as a pasture for cattle for the past 50 years. There are approximately 200 grazing cattle and horses currently utilizing the pastures. The livestock have not been fenced from the streams at any location within the Site. This continual livestock access to the streams has resulted in substantial erosion along the stream banks, incision of the channels, channel widening in some areas, and poor bed form diversity throughout the Site, as well as reduced water quality due to the introduction of fecal matter into the stream system. The property owner explained that many of the streams at the Site, particularly the smaller tributaries, were historically maintained through channelization, dredging, and clearing of the riparian buffer. Fecal and nutrient contamination to streams within the Site is currently a concern.

Polk County is located in the mountain foothills known as the "Thermal Belt", where warm air settles and moderates the temperature. The county's location in relation to the mountains also is a large attraction for newcomers and tourist. Development within the county has increased steadily in the last 5 to 10 years. There are multiple equestrian estates, vacation homes, new homes for retirees, subdivisions, and golf courses being built in the vicinity of the LWO Site.

# 2.5 Endangered / Threatened Species

According to the US Fish and Wildlife Service (USFWS), there are three federally protected species, dwarf flowered heartleaf (*Hexastylis naniflora*), small-whorled pagonia (*Isotria medeoloides*), and white irisette (*Sisyrinchium dichotomum*), along with eleven federal species of concern potentially occurring in Polk County (USFWS, 2003). Mulkey performed a review of mapping for compliance with ESA as well as an in-field survey for the listed species.

2.5.1 Federally Protected Species

As of the March 8, 2006 list, the USFWS identified two Threatened (T) species and one Endangered (E) species as occurring in Polk County. North Carolina National Heritage Program maps (updated July, 2006) were reviewed to determine if any protected species have been identified near the project area. This map review confirmed that no federally protected species and no designated critical habitat areas are known to occur within an one-mile radius of the study area. A description of habitat requirements and a biological conclusion is provided for these species in the following sections.

2.5.1.1 Dwarf-flowered heartleaf (*Hexastylis naniflora*) Federal Status: Threatened State Status: Threatened

The dwarf-flowered heartleaf has the smallest flower of any North American Hexastylis. Most flowers are less that 0.4 inch long, with narrow sepal tubes (never more than 0.28 inch wide). The jug-shaped flowers range from beige to dark brown, sometimes greenish or purplish. Leathery evergreen leaves are dark green and heart-shaped. Dwarf-flowered heartleaf commonly occurs in areas of acidic sandy loam soils found along bluffs and nearby slopes, hillsides and ravines, and in boggy areas adjacent to creekheads and streams. Soil type is the most important habitat requirement (Pacolet, Madison, or Musella types). Abundant sunlight in early spring is necessary for maximum flowering and seed production. Flowering generally occurs between mid-March and early June.

Biological Conclusion:

No Effect

Appropriate habitat for dwarf-flowered heartleaf consisting of acidic sandy loam soils (specifically Madison and Pacolet types) is not present within the study site but is present within the property encompassing the study site. A review of NCNHP records showed no occurrence of dwarf-flowered heartleaf within a one-mile radius of the project site. In addition, a pedestrian survey was conducted by qualified biologists from Mulkey on July 17, 2006. No occurrence of dwarf-flowered heartleaf was found on-site during the plant-by-plant survey. Therefore, project construction will have No Effect on this species.

2.5.1.2 Small-whorled pogonia (*Isotria medeoloides*) Federal Status: Threatened State Status: Endangered Small-whorled pogonia is a small perennial member of the Orchidaceae with long, pubescent roots and a smooth, hollow stem 3.8 to 10 inches (9.5 to 25 centimeters) tall terminating in a whorl of 5 or 6 light green, elliptical leaves that are somewhat pointed and measure up to 1.6 to 3.2 inches (8 by 4 centimeters). It is distinguishable from similar species such as purple fiveleaf orchid (*I. verticillata*) and Indian cucumber-root (*Medeola virginiana*) by its hollow stem. These plants arise from long slender roots with hollow stems terminating in a whorl of five or six light green leaves. The single flower is approximately 1 inch (2.5 centimeters) long, with yellowish-green to white petals and three longer green sepals. This orchid blooms in late spring from mid-May to mid-June. This plant is believed to be self-pollinating by mechanical processes. Populations of this plant are reported to have extended periods of dormancy and to bloom sporadically. This small spring ephemeral orchid is not observable outside of the spring growing season.

The small-whorled pogonia grows in young as well as maturing (second- or third-growth) forests, but typically grows in open, dry deciduous woods and areas along stream with acidic soils. It also grows in rich, mesic woods in association with white pine and rhododendron. Habitat is characterized by sparse to moderate ground cover, open understory canopy, and proximity to clearings such as roads, streams or canopy gaps. When it occurs in habitat where there is relatively high shrub coverage or high sapling density, flowering appears to be inhibited. Decaying organic matter such as wood litter from fallen limbs and trees, leaves, bark or stumps may be important for plant growth as various types of decaying vegetation are found in habitat of extant populations (von Oettingen, 1992).

#### Biological Conclusion: No Effect

Suitable habitat for the small-whorled pogonia is not present in the project study area. For this reason, no survey for this species was conducted. NCNHP does not list any occurrences of the small-whorled pogonia within a 1-mile radius of the project site. Therefore, project construction will have No Effect on this species.

2.5.1.3 White irisette (*Sisyrinchium dichotomum*) Federal Status: Endangered State Status: Endangered

The white irisette is a small perennial herb that grows in a dichotomously-branching pattern, reaching heights of approximately 4.3 to 7.9 inches (11 to 20 centimeters). The basal leaves, usually pale to bluish green, are from one-third to one-half the height of the plant. They are long-attenuate, with an acuminate apex. The tiny white flowers are 0.3 inches (0.75 centimeters) long and appear from late May through July in clusters of four to six at the ends of winged stems. The stems have from three to five nodes, each with one to three winged peduncles 1.6 to 2.8 inches (4 to 7 centimeters) long and 0.02 to 0.04 inches (0.06 to 0.09 centimeters) wide. There are successively shorter internodes between the dichotomous branches. Individual plants may have 10 or more stems arising from the fibrous roots. The fruit is a round, pale to medium brown capsule containing three to six round or elliptical black seeds. The dichotomous branching pattern and white flowers combine to distinguish this herb from other species within the genus (Feil, 1995).

White irisette closely resembles narrow-leaved blue-eyed grass (*Sisyrinchium angustifolium*). It is distinguished by the branching from the first node, with plant parts becoming noticeably smaller above. Blue-eyed grass usually has one node, with no noticeable reduction in the top of the plant. This species occurs on rich, basic soils probably weathered from amphibolite. It grows in clearings and the edges of upland woods where the canopy is thin and often where down-slope runoff has removed much of the deep litter layer ordinarily present on these sites. It is found on mid-elevation mountain slopes with a southeast to southwest aspect and shallow soils due to rockiness or steep terrain. The irisette is dependent on some

form of disturbance to maintain the open quality of its habitat. It is also grows in open disturbed sites such as woodland edges, power line easements, and roadsides (Feil, 1995).

### Biological Conclusion: No Effect

Suitable habitat for the white irisette consisting of clearings and the edges of upland woods where the canopy is thin is present in the project study area. A pedestrian was conducted by qualified biologists from Mulkey on July 17, 2006. No occurrence of white irisette was found on-site during the plant-by-plant survey. In addition, NCNHP does not list any occurrences of white irisette within a 1-mile radius of the project site. Therefore, project construction will have No Effect on this species.

# 2.5.2 Federal Designated Critical Habitat

In addition to species listed as endangered or threatened, areas designated as Critical Habitat are also recorded under Section 4 of the ESA. As defined by USFWS, critical habitat is "specific geographic areas, whether occupied by a listed species or not, that are essential for their conservation and that have been formally designated by rule published in the Federal Register" (USFWS, 2005). As of the March 8, 2006 list, no critical habitat areas are listed by USFWS as occurring in Polk County.

# 2.5.3 Federal Species of Concern and State Listed Species

Federal Species of Concern (FSC) are not legally protected under the Endangered Species Act and are not subject to any of its provisions, including Section 7. Species designated as FSC are defined as taxa which may or may not be listed in the future. These species were formerly Candidate 2 (C2) species or species under consideration for listing for which there is insufficient information to support listing.

In addition to the federally listed species referred to above, the USFWS lists 11 FSC as occurring in Polk County as of the January 29, 2007 protected species list. In addition, the NCNHP list (dated July 2006) included 18 species as receiving protection under state laws. Natural Heritage Program maps were reviewed to determine if any FSC or state protected species have been identified near the project area. This map review confirmed that no FSC or state species are known to occur within an one-mile radius of the study area.

| Common Name                          | Scientific name                  | Federal Status | Record Status      |
|--------------------------------------|----------------------------------|----------------|--------------------|
| Vertebrate:                          |                                  |                |                    |
| Cerulean warbler                     | Dendroica cerulea                | FSC            | Current            |
| Green salamander                     | Aneides aeneus                   | FSC            | Current            |
| Southern Appalachian eastern woodrat | Neotoma floridana<br>haematoreia | FSC            | Current            |
| Invertebrate:                        |                                  |                |                    |
| Diana fritillary (butterfly)         | Speyeria diana                   | FSC            | Current            |
| Grizzled skipper                     | Pyrgus wyandot                   | FSC            | Historic           |
| Vascular Plant:                      |                                  |                |                    |
| Big-leaf scurfpea                    | Orbexilum<br>macrophyllum        | FSC            | Historic           |
| Blue Ridge Ragwort                   | Packera millefolium              | FSC            | Current            |
| Butternut                            | Juglans cinerea                  | FSC            | Current            |
| Dwarf-flowered heartleaf             | Hexastylis naniflora             | Т              | Current            |
| French Broad heartleaf               | Hexastylis<br>rhombiformis       | FSC            | Current            |
| Large-flowered<br>barbara's-buttons  | Marshallia grandiflora           | FSC            | Historic           |
| Small whorled pogonia                | Isotria medeoloides              | Т              | Probable/potential |
| Sweet pinesap                        | Monotropsis odorata              | FSC            | Historic           |
| White irisette                       | Sisyrinchium<br>dichotomum       | E              | Current            |
| Nonvascular plant:                   |                                  |                |                    |
| Lichen:                              |                                  |                |                    |
| a lichen                             | Canoparmelia amabilis            | FSC            | Historic           |

#### **Definitions of Federal Status Codes:**

E = endangered. A taxon "in danger of extinction throughout all or a significant portion of its range."

T = threatened. A taxon "likely to become endangered within the foreseeable future throughout all or a significant portion of its range."

P = proposed. A taxon proposed for official listing as endangered or threatened.

C = candidate. A taxon under consideration for official listing for which there is sufficient information to support listing. (Formerly "C1" candidate species.)

FSC = federal species of concern.

T(S/A) = threatened due to similarity of appearance.

EXP = experimental population.

#### Definitions of "Record Status" qualifiers:

Current - the species has been observed in the county within the last 50 years.

Historic - the species was last observed in the county more than 50 years ago.

Obscure - the date and/or location of observation is uncertain.

Incidental/migrant - the species was observed outside of its normal range or habitat.

Probable/potential - the species is considered likely to occur in this county based on the proximity of known records (in adjacent counties), the presence of potentially suitable habitat, or both.

#### 2.6 Cultural Resources

The LWO project is located in a county listed as territory of the Eastern Band of Cherokee Indians (EBCI). Concurrence letters were sent to the State Historic Preservation Office (SHPO) on July 7, 2006, and to the EBCI on August 2, 2006. Mulkey received a letter of response dated August 3, 2006, from the SHPO office which recommended a comprehensive survey of the project area. Mulkey also received a letter of response from the EBCI dated August 29, 2006, that recommended a Phase I Archaeological Survey. On September 5, 2006, Mulkey subcontracted with Edwards-Pitman Environmental, Inc. (Edwards-Pitman) to complete an archaeological Phase I in a manner that would proceed to Phase II in order to determine eligibility if necessary. The field assessment of the Phase I archaeological survey was completed on September 15, 2006. There were no eligible sites identified within the Area of Potential Effects (APE). Edwards-Pitman completed a report detailing the process of the assessment and stated that there were no eligible sites identified within the APE.

# 2.7 **Potential Constraints**

Polk Central Elementary School had, in past years, a permitted discharge to Reach R1A of the South Branch of Little White Oak Creek. The Polk Board of Education owned an easement on this portion of the project to ensure it could continue this discharge. The school system was required by the DWQ to abandon their discharge into the Reach R1A in the mid 1990's and discharge directly into the South Branch of Little White Oak Creek. A 3" PVC pipe was installed from the school sand filtration system through the Walker Property and discharged into the South Branch of Little White Oak Creek. The school system never negotiated a new easement for the new discharge, nor was the old discharge easement extinguished. Mulkey worked with the Polk Board of Education to extinguish the easement on Reach 1A and establish and easement along the existing discharge pipe. The conservation easement abuts, but does not enter into the sewer easement. Construction egress and ingress will have to consider the piping as the Site is constructed.

There are multiple utilities that have been considered throughout the design of the LWO Site. The location of these utilities was considered in the design and will not adversely impact the restored stream.

#### 2.7.1 Property Ownership and Boundary

The project area for the Little White Oak Creek Stream Restoration is currently owned by the Walker Family Trust, 2255 Smith Waldrop Road, Mill Springs, North Carolina 27856. The Site is located on two parcels owned by the family: the first covering a 312 acre parcel (PIN No. P83-4) and the second covering a 62.9 acre parcel (PIN No. P94-1). The Walker Family has sold a conservation easement for 55.3 acres of land in order to restore the streams within the farm and protect the riparian areas in perpetuity. Acquisition of easement occurred on December 12, 2006.

#### 2.7.2 Site Access

The Site is accessible from state maintained roadways along NC Highway 9 and Thompson Road State Road (SR) 1324. Entry to the conservation easement areas is located along state maintained roads. Pedestrian easements were acquired through each of the crossings to ensure access for inspection of the easement from the corridor for perpetuity.

#### 2.7.3 Utilities

A point source discharge which is piped from the sewer system of Polk Central Elementary School and drains to Little White Oak Creek lies near to Reach 1A. The conservation easement abuts, but does not enter into the sewer easement.

The PSNC Energy (PSNC) owns a 50 foot right of way which crosses Reaches R2B and R2C. The conservation easement for the LWO Site abuts, but does not enter into the right of way. Stream construction will be limited within this PSNC right of way area.

The Rutherford Electric Membership Corporation also has a right of way located adjacent to SR1334 and also crosses the upper area of Reach R2C at the PSNC Right of Way. The conservation easement for the LWO Site abuts, but does not enter into the right of way. Stream construction will be limited within this right of way area.

The North Carolina Department of Transportation (NCDOT) owns right of ways which cross the Little White Oak Creek and the South Branch of the Little White Oak Creek. NC Highway 9 and SR 1334 are bridged as they cross the project site.

Utilities located throughout the Site were not considered in stream footage calculated for the proposed SMUs nor were the utility right of ways included in any of the conservation easements.

# 2.7.4 FEMA / Hydrologic Trespass

The reaches of South Branch Little White Oak Creek and Little White Oak Creek at the Little White Oak Creek Stream Restoration Site are located in Zone A as shown on Flood Insurance Rate Map (FIRM) for Polk County, North Carolina (Unincorporated Areas), Page 4 of 5, Community Panel Number 370194 0004 A, Map Revised: May 19, 1978, Converted by Letter Effective 01/01/87 (Figure 4). Zone A is defined as a Special Flood Hazard Area. Zone A is the flood insurance rate zone that corresponds to 1-percent annual chance floodplains that are determined in the Flood Insurance Study by approximate methods of analysis. Because detailed hydraulic analyses are not performed for such areas, no base flood elevations or depths are shown within this zone. Mandatory flood insurance purchase requirements apply. The areas that the other unnamed tributaries at the Site are located in are not defined on the said mapping.

A HEC/RAS analysis was completed and it was determined that the proposed restoration will result in a "no-rise" of the streams within the project area. Mulkey does not anticipate any hydrologic trespass issues during or after restoration of the Site.

#### 3.0 <u>Project Site Streams (Existing Conditions)</u>

Reach R1 is the South Branch Little White Oak Creek at the Site. This reach flows eastward from the southwestern end of the Site, under NC Highway 9, to its confluence with Little White Oak Creek at the center of the Site. Reach R1 was divided into two sub-reaches for the existing conditions survey and study: the reach upstream of NC Highway 9 (R1 upstream) and the reach downstream of NC Highway 9 (R1 downstream). Both appeared to be of the same stream type and condition, but were divided into sub-reaches for ease of study due to the difference in drainage area between the two.

Two unnamed tributaries drain to the sub-reach of Reach R1 upstream of NC Highway 9. The first is Reach R1A which is the unnamed tributary that enters the Site from a culvert under NC Highway 9 at the Polk Central School. This stream flows southeastward from the culvert to its confluence with the upstream sub-reach of Reach R1 at the western end of the Site. The second unnamed tributary, Reach

R1B, flows to the upstream sub-reach of Reach R1 just south of the NC Highway 9 Bridge. This stream begins at the toe of the slope at the southern edge of the Site and flows northeastward to its confluence with the upstream sub-reach of Reach R1 just south of the NC Highway 9 Bridge. Restoration work or further study along Reach R1B is not being considered as originally proposed because the other project stream reaches provide the total amount of SMU's proposed by Mulkey for this project.

Reach R2 is the reach of Little White Oak Creek at the Site. This reach flows eastward from the northwest end of the Site to its confluence with Reach R1 at the center of the Site. After this confluence, Reach R2 continues to flow eastward, under SR 1324, to the eastern end of the Site, where Little White Oak Creek leaves the Site. Reach R2 was divided into three sub-reaches for the existing conditions survey and study: The reach upstream of the confluence with Reach R1, the reach between the confluence with Reach R1 and the SR 1324 bridge, and the reach from the SR 1324 bridge and the eastern end of the Site at the property line.

Four unnamed tributaries drain to Reach R2 at the Site. Three of the unnamed tributaries flow into the sub-reaches of Reach R2 upstream of the confluence with Reach R1. The fourth unnamed tributary drains into the sub-reach of Reach R2 downstream of the SR 1324 bridge. The three unnamed tributaries that flow into the sub-reach of Reach R2 is reach R2A, R2B, and reach R2C. Reach R2A which enters from off-site at the northwest end of the Site and flows southward to its confluence with Reach R2. Reach R2B emanates north of the Site and flows south until it reaches the confluence with R2 at the middle of the property. The headwaters of Reach R2C originate on the north end of the Site and the stream flows southward across the Site to its confluence with R2 at the middle of the property. Restoration work or further study along Reach R2C is not being considered as originally proposed because the other project stream reaches provide the total amount of SMU's proposed by Mulkey for this project. The unnamed tributary that flows into the sub-reach of Reach R2 downstream of the SR 1324 bridge is Reach R2D. This stream flows from a culvert under SR 1330 northeastward to its confluence with Reach R2 at the eastern end of the Site. (Figure 4)

# 3.1 Channel Classification

The Reach R1 classifies as a degraded E5 stream type according to Rosgen Classification Methodologies. The existing riparian buffers for Reach R1 range from almost non-existent to a very narrow buffer of scattered trees. Cattle have direct access to the stream and buffer in these areas. Cattle intrusion and the lack of adequate riparian buffer to provide sufficient bank stability have resulted in severe bank erosion, heavy sedimentation, and loss of riparian vegetation along both sub-reaches. Heavy sedimentation is also contributing to the lack of the natural bedform diversity that is expected in stable stream types.

Reach R1A classifies as degraded B6c stream types. Levees or spoil piles were observed along both banks of stream which provides an indication that the streams have been channelized and straightened in the past. This evidence was confirmed by the property owner as he explained that many of the streams at the Site, particularly the smaller tributaries, were historically maintained through channelization, dredging, and clearing of the riparian buffer. Reach R1A is nearly entrenched along much of its length as a result of the historic maintenance practices employed along these streams. The existing riparian buffers for Reach R1A are narrow and consist mainly of shrubs and herbaceous vegetation. Cattle have direct access to the stream and buffer along the entire length of the root mass associated with the thick stand of briars and shrubs adjacent to the streams. A distinct lack of natural dimension, pattern, and profile was observed along the entire length of Reach R1A.

Both sub-reaches of R2 (R2 Upper and R2 Lower) appeared to be of the same stream type and condition, but were divided into sub-reaches for ease of study due to the difference in drainage area between the

three. Both of these sub-reach R2 classified as Rosgen degraded E5 stream types. These sub-reaches are incised with a mean low bank height ratios in excess of 1.75.

Reach R2B classifies as Rosgen G5c stream type. Reach R2A is classified as a degraded E4 and Reach R2D also classified as degraded E4. Levees or spoil piles were observed along both banks of these subreaches, indicating that these streams have been channelized and likely straightened in the past. This evidence was confirmed by the property owner as he explained that many of the streams at the Site, particularly the smaller tributaries, were historically maintained through channelization, dredging, and clearing of the riparian buffer. The upstream reach of sub-reach R2B is entrenched along much of their length as a result of the historic maintenance practices employed along these streams. R2A and R2D are close to becoming entrenched along their reaches.

# 3.2 Discharge

Mulkey surveyed representative stream cross sections and calculated drainage areas for each for the project stream reaches. This data was used to determine various bankfull parameters, including cross sectional area, width, mean depth and discharge. These parameters for the project stream reaches were compared to the North Carolina Regional Curves for the Piedmont and Mountain Physiographic Regions compiled by SRI. In each case, the data fell within the 95% confidence intervals for the Piedmont and Mountain Curves.

Although 78% of the project watershed is forested, development within the watershed is increasing. As development continues to escalate, impervious and storm water discharges will inevitably increase. This trend would suggest a change in bankfull over time.

### 3.3 Channel Morphology (Pattern, Dimension, and Profile)

The LWO Site lies within two parcels that have historically been used for pasture and forest land. Cattle intrusion and other land uses have resulted in substantial degradation to the stream throughout the Site for the past 50 years. This continual livestock access to the streams has resulted in substantial erosion along the stream banks, incision of the channels, channel widening in some areas, and poor bed form diversity throughout the Site. The property owner explained that many of the streams at the Site, particularly the smaller tributaries, were historically maintained through channelization, dredging, and clearing of the riparian buffer. These landuse practices have significantly impacted the channel morphology of much of the stream reaches at the Site. In conjunction with the conversation with the land owner about the land use practices employed at the site, a research of historical photography seems to indicate the site was timbered prior to 1939, and may have been channelized and dredged periodically since it was initially dredged. Substantial variance from natural channel morphology is evident in the comparison of the existing conditions morphological data from the project stream reaches versus that from the reference reach.

#### 3.4 Channel Stability Assessment

Stream stability assessment methodology included the use of Pfankuch, Bank Height Erosion Index (BEHI), and Near Bank Stress (NBS) evaluation processes. Assessments were completed at locations within the reaches representative of the majority of the stream footage within the specific reach.

Mulkey completed the Pfankuch assessment for each reach of the LWO Site. The sediment supply category is designed to assess the availability of sediment based on the observed deposition, transport, and storage within a stream reach. The sediment supply for all reaches was high, with the exception of R2A which was moderate and R2B which was rated as very high. Stream bed stability category

documents locations of aggradation and degradation within the stream reach. The stream bed stability was identified as degrading. The width to depth ratio indicates normal or abnormal channel width conditions. Width-to-depth condition was rated as high, with the exception of R2A which rated as normal. Using the system outlined by Rosgen (1996), the stream conditions were determined to be poor for all reaches.

The BEHI assessment methodology was utilized to develop streambank erodibility ratings. This assessment evaluates the bank/bankfull height ratio, rooting depth, root density, bank angle, and the percent of the bank protected by vegetation. The BEHI ratings for the LWO reaches were rated as extreme, with the exception of R1 being rated as very high and R2B rated as high. The combined total estimated sediment loss for the LWO Site is at 2,209 tons/year.

The NBS methodology is used to develop a quantitative prediction of stream bank erosion rates and their relative contribution to the total bedload transported by a stream. The NBS adjective rating was determined using NBS Method No. 5 for each reach. The NBS adjective ratings were identified as low for most of the reaches. The exceptions were R1A and R2D which were rated as high and R1B rated as moderate.

# 3.5 Bankfull Verification

Prior to surveying the existing channel, Mulkey used the North Carolina Regional Curves developed by the Stream Restoration Institute (SRI) to predict the approximate stream dimensions for each reach. Because the Site is located in the mountains physiographic province, but very near the border between the Mountains and Piedmont physiographic province, the regional curves for both were used for bankfull verification. During the establishment of cross section locations, Mulkey utilized stream dimensions and field observations to verify bankfull parameters for each reach. Following field surveys of the existing channel, data for each cross section was computed and plotted against the North Carolina Regional Curves for the Piedmont and Mountain Physiographic Regions. In each case, the data fell within the 95% confidence interval for the Piedmont and Mountain curves.

# 3.6 Vegetation

The existing riparian buffers for the LWO Site range from almost non-existent to a very narrow buffer of scattered trees. There are isolated locations along this reach where the riparian buffer is somewhat wider, but direct access for cattle remains available throughout most of the entire reach of this stream. Cattle intrusion and the lack of adequate riparian buffer to provide sufficient bank stability have resulted in severe bank erosion and associated sedimentation and loss of riparian vegetation along each of the sub-reaches.

The vegetation within the proposed conservation easement areas at the Site is separated into two major groupings. These groupings are based primarily on topographical position and current land use. The first grouping covers the sparsely distributed riparian vegetation found adjacent to the existing streams at the Site.

The dominant species in these areas includes tulip poplar (*Liriodendron tulipifera*), American sycamore (*Platanus occidentalis*), river birch (*Betula nigra*), red maple (*Acer rubrum*), tag alder (*Alnus serrulata*), silky dogwood (*Cornus amonum*), hackberry (*Celtis laevigata*), eastern red cedar (*Juniperus virginiana*), black walnut (*Juglans nigra*), honey locust (*Gleditsia triacanthos*), green ash (*Fraxinus pennsylvanica*), sweetgum (*Liquidambar styraciflua*), blackberry (*Rubus spp.*), giant cane (*Arundinaria gigantea*), black willow (*Salix nigra*), elderberry (*Sambucus canadensis*), greenbrier (*Smilax spp.*), honeysuckle (*Lonicera japonica*), and multiflora rose (*Rosa multiflora*).

The second grouping includes areas within the open pastures at the Site. The dominant species in these areas includes fescue (*Festuca* spp.), broomsedge (*Andropogon virginicus*), multiflora rose (*Rosa multiflora*), greenbrier (*Smilax* spp.), blackberry (*Rubus* spp.), and various other grasses and forbs. Wetter areas in the existing pastures were dominated by various rushes (*Juncus* spp.) and sedges (*Carex* spp.)

# 4.0 <u>Reference Stream</u>

Using topographic software, Mulkey staff identified multiple streams within a 7 to 12 mile radius from the Site. Onsite visits were made to approximately 50 stream reaches. Of the 50 reaches examined, Mulkey identified one stream approximately 5 miles northwest of the Site suitable to be used as a reference reach for the LWO Site. The Unnamed Tributary to Ostin Creek (UT to Ostin Creek) is located north of White Oak Mountain and obtains its watershed from Piney Mountain. (Figure 5)

# 4.1 Watershed Characterization

The watershed for the UT to Ostin Creek appears to be more than 90% forested with the remaining 20% in open land. It appears that the open land may be a result of a recent timber harvest within the watershed. While the majority of the watershed appears to be mature stands of timber, there are some indications in the stream condition itself that may indicate timbering within the watershed could have occurred in the past. For instance, while the stream data collected does indicate stream stability, remnant bank features indicate the potential for stream transition in the past. The measured drainage area for the reference reach section evaluated is 554.88 acres (0.87 square miles). (Figure 6)

# 4.2 Channel Classification

Ostin Creek is classified as a C 4/1 according to Rosgen classification of natural rivers (Rosgen, 1994, 1996). The bankfull width was calculated at 20.6 feet with a mean depth of 1.62 feet. The width-to-depth ratio was calculated to be 12.72 and the entrenchment ratio was determined to be 3.53. The UT to Ostin Creek reach was determined to have a moderate to high sinuosity which was calculated to be 1.46.

# 4.3 Discharge (Bankfull, Trends)

Mulkey surveyed representative stream cross sections and calculated drainage areas for each for the reference reach stream. This data was used to determine various bankfull parameters, including cross sectional area, width, mean depth and discharge. These parameters for the reference reach were compared to the North Carolina Regional Curves for the Piedmont and Mountain Physiographic Regions compiled by SRI. In each case, the data fell within the 95% confidence intervals for the Piedmont and Mountain Curves.

# 4.4 Channel Morphology (Pattern, Dimension, and Profile)

Reference reach quality streams are very limited in this area. Development, timber management, and agricultural practices have impacted many of the once stable stream systems. Many of the streams evaluated exhibited characteristics of aggradation, lack of channel bed diversity, and bank instability. The UT to Ostin Creek stream channel exhibited expected natural bed features, including deep pools in bends and wide shallow riffles within straightway areas. The reference reach was surrounded by a mature hardwood buffer and exhibited a wide range of horizontal geometric features, including radii of curvature, belt width, and meander wavelength.

### 4.5 Channel Stability Assessment

Stream stability assessment methodology included the use of Pfankuch, BEHI, and NBS evaluation processes. Assessments were completed at a location within the reach, which most represented the majority of the stream footage within the reach.

Mulkey completed the Pfankuch assessment for the UT to Ostin Creek site. The sediment supply assessment was rated as low. The stream bed stability was identified as stable. Width to depth condition was rated as normal. Using the guidelines provided, the overall stream condition was noted as good for the evaluated reach.

The BEHI assessment methodology was utilized to develop streambank erodibility ratings. This assessment evaluates the bank/bankfull height ratio, rooting depth, root density, bank angle, and the percent of the bank protected by vegetation. The BEHI ratings for the UT to Ostin Creek were moderate. The combined total sediment loss for the reference reach site is estimated at 41.3 tons/year.

The NBS methodology is used to develop a quantitative prediction of stream bank erosion rates and their relative contribution to the total bedload transported by a stream. The NBS adjective rating was determined as high for the reference stream using NBS Method No. 5.

# 4.6 Bankfull Verification

During field investigations, Mulkey compared the surveyed bankfull parameters with the North Carolina Regional Curves for the Piedmont and Mountain Physiographic Regions for verification of correct bankfull identification. Following field investigations, Mulkey rechecked the collected data against the North Carolina Regional Curves for the Piedmont and Mountain Physiographic Regions and found each surveyed bankfull cross sectional area fell within the 95% confidence interval for the Piedmont and Mountain Regional Curve.

# 4.7 Vegetation

During the reference reach survey, vegetative species within the riparian area were noted. The buffer consisted of Eastern white pine (*Pinus strobus*), red maple (*Acer rubrum*), American beech (*Fagus grandifolia*), white oak (*Quercus alba*), tulip tree (*Liriodendron tulipifera*), yellowroot (*Xanthorhizza simplicissima*), sourwood (*Oxydendrum arboretum*), hazel nut (*Corylus americana*), Virginia pine (*Pinus virginiana*), green ash (*Fraxinus pennsylvanica*), hickory (*Carya sp.*), bigleaf snowbell (*Styrax grandifolius*), Eastern red cedar (*Juniperus virginiana*), American hornbeam (*Carpinus caroliniana*), American sycamore (*Platanus occidentalis*), small carpgrass (*Arthraxon hispidus*), river birch (*Betula nigra*), common persimmon (*Diospyros virginiana*), and eastern hemlock (*Tsuga canadensis*). The understory consisted primarily of giant cane (*Arundinaria gigantea*), highland doghobble (*Leucothoe fontanesiana*), and greenbrier (*Smilax spp*). (Figure 8)

# 5.0 <u>Project Site Restoration Plan</u>

# 5.1 Restoration Project Goals and Objectives

The goal of the Little White Oak Creek Stream Restoration Site are as follows:

- To improve water quality for the project stream reaches, as well as downstream reaches
- To reduce the rate of bank erosion along the project stream reaches
- To better attenuate flood flows

• To enhance wildlife habitat at the project site

Theses goal will be met through the following objectives:

- By using natural channel design to restore stable pattern, dimension, and profile for the project stream reaches
- By reestablishing a flood plain or connecting the stream back to its historic floodplain, or a combination of both, for each project stream reach
- By creating or restoring floodplain features such as vernal pools, off channel ponds, or riparian wetlands
- By increasing the amount of instream habitation through the addition of rock and wood structures, the
- By re-establishing a more natural riparian buffer, thereby reintroducing shading, cover areas, and travel corridors.

How these goals will be met through the described objectives are discussed in more detail in the following paragraphs.

The goal of improving water quality will be accomplished by meeting two objectives: first, by reducing sedimentation, and second by restoring riparian buffers. Restoring stable stream pattern, dimension, and profile will reduce sedimentation to the stream by preventing the mass wasting of stream banks currently prevalent at the Site. All of the stream restoration design and construction will follow methodologies consistent with natural channel design. Our proposed restoration plan includes re-establishing a floodplain and forested riparian buffer which will both provide an area of filtration for surface and ground water from the adjacent, heavily grazed pastures. The floodplain will be re-established by raising the existing streambed elevation in order to reconnect the streams to their historic floodplains, or in the cases where this is not feasible due to site constraints, through the construction of bankfull benches. By reconnecting the streams to their original floodplains or by creating improved floodplains through bankfull bench construction, the streams are provided a much larger area to attenuate flood flows. The sections of abandoned channel that will be left open and modified to create vernal pools, off channel ponds, or riparian wetlands will also provide additional flood storage.

The second goal will be to enhance instream and terrestrial wildlife habitat and will be achieved by increasing the amount and quality of habitat within the stream and within the riparian buffer. The existing condition of the streams and riparian buffers at the site provide limited available habitat for aquatic and terrestrial species in and around the stream. The objective is to utilize the proposed restoration site to enhance habitat within the stream by restoring natural channel stability and through the introduction of instream boulder and wood structures. The restoration of a forested riparian buffer will also provide stream shading, as well as cover areas and travel corridors that are vital for traveling, foraging, loafing and nesting for many wildlife species. The Site provides an excellent opportunity to restore and preserve a substantial riparian zone on lands that are currently being used for pasture. The riparian buffers, at least 50 feet in width, will be established along both sides of all of the streams at the Site. These buffers will be fenced to prevent future cattle intrusion.

#### 5.1.1 Designed Channel Classification

The Ostin Creek reference reach was used to design each of the project stream reaches. This reference reach classifies as a C 4/1 stream type according to Rosgen classification of natural rivers (Rosgen, 1994, 1996). The design of each project stream reach was based on the dimensionless ratios developed from the morphological data collected for the reference reach. This resulted in each project stream reach being

designed as a C stream type. Entrenchment ratios proposed for each project stream reach exceed 2.2 in all instances. An average width to depth ratio of 12.7 was used for each reach. The design for each stream reach was developed with a target sinuosity of 1.3, lower than the reference reach sinuosity of 1.46. The proposed slope for each project stream reach varied from reach to reach, dependant upon various valley and site constraints, ranging from 0.149 percent to 1.14 percent. The ends of the unnamed tributaries have transition slopes of nearly 2 percent where they tie back into the main channels at their downstream ends. All of the above parameters are typical of those associated with C stream types.

All of this data is summarized for each project stream reach in the included morphological tables. The bankfull width was calculated at 20.6 feet with a mean depth of 1.62 feet. The width-to-depth ratio was calculated to be 12.72 and the entrenchment ratio was determined to be 3.53. The UT to Ostin Creek reach was determined to have a moderate to high sinuosity which was calculated to be 1.46.

#### 5.1.2 Target Buffer Communities

The target buffer communities will be comprised of plants that naturally occur in this physiographic province and within a specific hydrologic setting. The target community will be indicative of the Piedmont/Low Mountain Alluvial Forest described by Shafale and Weakley (1990). The Little White Oak Stream Restoration Planting Plan will include the following:

# Zone 1

**Stream Banks (6)** Silky dogwood (*Cornus amomum*) Silky willow (*Salix sericea*) Black willow (*Salix nigra*) Buttonbush (*Cephalanthus occidentalis*) Tag alder (*Alnus serrulata*) Cottonwood (*Populus deltoides*)

# Zone 2

#### **Riparian Species (13)**

American elm (Ulmus americana) White ash (Fraxinus americana) Silky dogwood (Cornus amomum) Ironwood (Carpinus caroliniana) Buttonbush (Cephalanthus occidentalis) Spicebush (Lindera benzoin) Tag alder (Alnus serrulata) Sycamore (Plantanus occidentalis) River birch (Betula nigra) Cottonwood (Populus deltoides) American hazelnut (Corylus americana) Swamp chestnut oak (Quercus michauxii) Elderberry (Sambucus canadensis)

#### Zone 3 Wotland Sna

Wetland Species (6) Silky dogwood (Cornus amomum) Silky willow (Salix sericea) Black willow (Salix nigra) Buttonbush (Cephalanthus occidentalis) Tag alder (Alnus serrulata) Elderberry (Sambucus canadensis)

# Zone 4

# Upland species (15)

Eastern white pine (*Pinus strobus*) Shortleaf pine (*Pinus echinata*), Virginia Pine (*Pinus virginiana*) White oak (*Quercus alba*) Southern red oak (*Quercus falcata*) Post oak (*Quercus stellata*) Eastern red cedar (*Juniperus virginiana*), Common persimmon (*Diospyros virginiana*), Black walnut (*Juglans nigra*) Mockernut hickory (*Carya tomentosa*) Pignut hickory (*Carya glabra*) American holly (*Ilex opaca*) Flowering dogwood (*Cornus florida*) Black walnut (*Juglans nigra*) American beech (*Fagus grandifolia*)

#### 5.2 Sediment Transport Analyses

Sediment plays a major role in the influence of channel stability and morphology (Rosgen, 1996). A stable stream has the capacity to move its sediment load without aggrading or degrading. Sediment analyses are generally divided into measurements of bedload and suspended sediment (washload), changes in sediment storage, size distributions and source areas. Washload is normally composed of fine sands, silts and clay transported in suspension at a rate that is determined by availability and not hydraulically controlled. Bedload is transported by rolling, sliding, or hopping (saltating) along the bed. At higher discharges, some portion of the bedload can be suspended, especially if there is a sand component in the bedload. Bed material transport rates are essentially controlled by the size and nature of the bed material and hydraulic conditions (Hey and Rosgen, 1997).

Two measures are used to calculate sediment loads for natural channel design projects: (1) sediment transport competency and (2) sediment transport capacity. Competency is a stream's ability to move particles of a given size. It is expressed as a measure of force (lbs/ft<sup>2</sup>). Capacity is a stream's ability to move a quantity of sediment and is a measurement of stream power, expressed in units of lbs/ft•sec. A competence analysis was conducted for the project stream reaches, where reliable measurements and sampling could be conducted, to ensure that the designed stream beds do not aggrade or degrade during bankfull conditions. Brief description of the analyses conducted for the project is presented in the following sub-section.

#### 5.2.1 Methodology

The critical dimensionless shear stress ( $\tau^*_{ci}$ ) is the measure of force required to initiate general movement of particles in a bed of a given composition. This calculation is part of several calculations used to determine aggradation/degradation along the stream channel. For shear stresses exceeding this critical value, essentially all grain sizes are transported at rates in proportion to their presence in the bed (Wohl, 2000). For gravel-bed streams, the critical dimensionless shear stress is generally calculated using surface and subsurface particle samples from representative riffle sections. The critical dimensionless shear stress calculation is presented below.

| $\tau^*_{\rm ci} = 0.0834 \left( d_i / d_{50} \right)^{-0.872}$ | where, | $\tau^*_{ci}$ = critical dimensionless shear stress (lbs/ft <sup>2</sup> ) |
|-----------------------------------------------------------------|--------|----------------------------------------------------------------------------|
|                                                                 |        | $d_i$ = median particle size of riffle bed<br>surface (mm)                 |
|                                                                 |        | $d_{50}$ = median particle size of subsurface<br>sample (mm)               |

Note that  $d_i$  and  $d_{50}$  values were empirically determined by *in situ* measurements.

Based on the reach classification pebble counts, each of the project stream reaches classified as sand bed streams (d50 of the stream bed material between 0,062 mm and 2.0 mm), except for reach R2A, which classified as a gravel bed stream (d50 of the bed material between 2.0 mm and 64 mm). We expect that the bed materials for each of the streams will coarsen as a result of the reduction of fine sediment as the rate of bank erosion is significantly reduced by the restoration project. Although the above-described project stream reaches classified as sand bed streams, each of the reaches had representative riffles with gravel material where pavement and subpavement samples could be taken. Each of these riffles had medium to large gravel particles on the surface. These gravel particles are presumably moved during bankfull events, meaning that using the results of a pavement and subpavment sample from these riffles to conduct an entrainment analyses is a legitamate analyses of sediment competency.

The shear stress placed on the sediment particles is the force that entrains and moves the particles. The critical shear for the proposed channel has to be sufficient to move the  $D_{84}$  of the bed material. The critical shear stress was calculated and plotted on the Modified Shield's curve to determine the approximate size of particles that will be moved (Rosgen, 2001).

#### 5.2.2 Calculations and Discussion

Existing and proposed entrainment calculations for each reach are included in Appendix 5. Calculations of critical depth and slope are required and are included in these calculations. Each of the existing project stream reaches exhibited excessive shear, and thus are considered degrading systems. The proposed designs for each reach were developed with the goal of reducing shear stress within the parameters of the reference reach data and the site constraints. Driven by this goal, the slope of each reach was flattened by increasing the sinuosity, and thus the length. In conjunction with changing the slope of each reach, the dimension was also corrected, within the limits dictated by the proposed width to depth ratio, for each to better match that expected for a stable stream. Although it was not possible to completely reduce the shear stresses to the desired value for each reach, significant reduction of the existing shear stress was made in each case. The design channel is predicted to remain stable over time based on the establishment of proper dimension, pattern and profile and an active floodplain. The establishment of riparian vegetation will further enhance the long term stability of the entire system.

# 5.3 HEC-RAS Analysis

# 5.3.1 No-rise, LOMR, CLOMR

Polk County is one of the areas within the State of North Carolina undergoing the remapping process by the North Carolina Floodplain Mapping Program. Therefore, the current effective map for The Little White Oak Creek Site is the Flood Hazard Boundary Map, Community-Panel Number 370194 0004 A dated May 19, 1978 (see appendix). As depicted by this map, the Little White Oak Creek Site falls within a FEMA Zone A designation meaning the area is subject to the 100-year flood but no Base Flood Elevations (BFEs) or floodways have been determined. Given this Zone A designation, a No-Rise Certification is sufficient in providing evidence for a no rise event of the 100-year storm event associated with the restoration of Little White Oak Creek and it's tributaries.

The approximate limits of flooding for the existing and proposed channels were determined using the Hydrologic Engineering Center's River Analysis System (HEC-RAS) software, version 3.1.3, provided by the US Army Corps of Engineers. Water surface profiles for existing and proposed conditions during the 10-year, 50-year, 100-year, and 500-year storm events were computed and compared as shown in Appendix 5. The tables are arranged to show the discharge (Q) and the comparison of existing and proposed water surface elevations at each cross section with a positive difference indicating a water surface drop from existing to proposed conditions. The 100-year event demonstrates an average drop of 1.26ft, ranging from 0.00ft to 3.41ft. These values for the 100-year event are within the acceptable limits of the No Rise Certification given the Zone A designation.

# 5.3.2 Hydrologic Trespass

HEC/RAS analysis was completed and it was determined that the proposed restoration will result in a "no-rise" of the streams within the project area. Based upon the modeling that Mulkey has reviewed, it is not anticipate any hydrologic trespass issues during or after restoration of the Site.

# **5.4 Stormwater Best Management Practices**

#### 5.4.1 Narrative of Site-Specific Stormwater Concerns

Adjacent land uses to the conservation easement at the LWO Site include pasture, forest land, and NC DOT Right of Ways. Mulkey will identify areas of potential concentrated flow from areas of the adjacent to the easement that enter the project area. These areas will be addressed through multiple measures depending on the Site specific conditions.

# 5.4.2 Device Description and Application

Vernal pools and/or oxbow ponds will be used to capture concentrated overland flow and provide energy dissipation and treatment of stormwater prior to entering the stream. These pools will serve as small wetland pockets which will also provide additional habitat for amphibians.

When feasible and agreeable with the landowner, Mulkey will eliminate concentrated flow areas by filling and regarding to provide sheet flow into the riparian buffer. Soil excavated from the restoration channel will be used in these areas and stabilized. These efforts will also provide some valley restoration for the streams being restored. There are currently areas in which hydrology has been removed from historic berming of the channel and rutting within the pasture areas.

# 5.5 Soil Restoration

The majority of the stream restoration activities to be completed within the Little White Oak project will be accomplished by utilizing Priority 2 stream methodologies. This methodology creates a floodplain at the bankfull elevation which is below existing grade. Once the floodplain bench is graded, the remaining subsoil will require amendments and cultural practices to encourage plant growth. To enhance the soil medium to be planted, topsoil previously removed from the construction area will be spread throughout the floodplain. Through ripping or disking topsoil will be incorporated along with soil amendments to prepare the planting medium.

#### 5.5.1 Soil Preparation and Amendment

Prior to excavation of the channel and floodplain areas, topsoil will be stripped to the depths that are encountered to prevent intermingling with underlying subsoil or other waste materials. Prior to stripping the topsoil, sod and grass will be removed. Topsoil will be stockpiled away from the edge of excavations. Measures will be taken to control potential erosion from stockpile areas. Once final grading has been completed, excavated areas will be scarified to a depth of at least 6" to loosen the soil. Salvaged topsoil will be placed and spread evenly to a depth of at least 3" of topsoil materials. Prior to completing final grade, lime and fertilizer will be added to the soil as an amendment to enhance the soil medium to a level suitable for plant growth and development.

#### 5.6 Natural Plant Community Restoration

Within the LWO Site, much of the riparian zone has been denuded by livestock, dredging, and bank erosion. Restoration of the natural plant community will be four fold: 1) implementing a stream design while remaining cognizant of existing trees and retaining existing trees when possible; 2) establishing woody vegetation within the riparian corridor to restore the buffer; 3) eliminating invasive species; and 4) fencing livestock from all restored areas to eliminate their impact within the riparian zone.

#### 5.6.1 Plant Community Restoration

Mulkey has evaluated multiple plant communities within stream corridors near the Site, including the plant community within the buffer of the Ostin Creek reference reach and has used these evaluations in the development of the planting plan for the Site. The planting plan for the riparian and upland buffers of the LWO Site will provide post-construction erosion control and riparian habitat enhancement. The planting plan will also attempt to blend existing vegetative communities into recently restored areas. Plantings in the buffer areas will include native species appropriate for the Piedmont/Mountain physiographic province and the LWO Site. Native species plants will be used exclusively for all Site plantings. Plants within the floodplain will be flood tolerant species to accommodate periodic flooding events throughout the year. A variety of trees and shrubs will be planted to provide cover and habitat for wildlife as well as soil stabilization.

Shrubs and trees with extensive, deep rooting systems will assist in stabilizing the banks in the long term. Native grasses, transplants, and live stakes will be utilized at the Site for immediate stabilization in conjunction with the erosion control matting along the newly created stream banks. Vegetation will be planted in a random fashion in an effort to mimic natural plant communities. Colonization of local herbaceous vegetation will inevitably occur, which will provide additional stream stability.

Shrubs will be planted in staggered rows on the upslope of random eight-foot centers. Trees will be planted as bare root stock on random eight-foot centers at a frequency of 680 stems per acre. Planting of species will utilize dormant plant stock and will be performed to the extent practicable between December 1 and March 15.

Tree and shrub species will be planted in specific planting zones. These planting zones will accommodate plant species which have specific requirements for growth. Hydrology and topography are the main factors that dictate a plant's ability to survive and to thrive following planting. These planting zones will be created around these requirements and will include the following zones: Zone 1 (Stream Banks), Zone 2 (Riparian Buffer), Zone 3 (Wetlands), and Zone 4 (Upland Buffers). A list of species in each Zone can be found in Table 7.

#### 5.6.2 On-site Invasive Species Management

Invasive and exotic species will be identified and removed during clearing and grubbing of the Site. These species will be destroyed in a manner which will not allow propagation from the parent plant. Further control of the invasive and exotic species will be done on an as-needed basis following construction with either herbicide application and/or through mechanical removal.

# 6.0 <u>Performance Criteria</u>

#### 6.1 Streams

Success criteria for stream mitigation sites are based on guidelines established by the USACE, US Environmental Protection Agency (USEPA), NC Wildlife Resources Commission (NCWRC) and the NCDWQ (USACE *et. al*, 2003). These guidelines establish criteria for both hydrologic conditions and vegetation survival.

Stream channel monitoring will determine the degree of success a mitigation project has achieved in meeting the objectives of providing proper channel function and increased habitat quality. Monitoring will be performed each year for the 5-year monitoring period and no less than two bankfull flow events must be documented within the monitoring period, with each of the bankfull events occurring during

separate monitoring years. In the event that the required bankfull events do not occur during the 5-year period, consultation with EEP and other resource agencies will be conducted. The monitoring will include reference photos and channel stability analyses, as specified in the Ecosystem Enhancement Program "Content, Format and Data Requirements for EEP Monitoring Reports, Version 1.1, and dated 09/15/05.

The Mulkey Team will evaluate the restored sections of the Site in regard to overall channel stability. Since streams are considered as "active" or "dynamic" systems, restoration is achieved by allowing the channel to develop a stable dimension, pattern, and profile such that, over time, the stream features (riffle, run, pool, glide) are maintained and the channel does not aggrade or degrade. Minor morphologic adjustments from the design stream are anticipated based on the correlation of reference reach data, excessive sediment deposition from upstream sources, and on-going changes in land use within the watershed.

Monitoring of the Little White Oak Creek Stream Restoration Site will be performed until success criteria are met up to a period of five years. Monitoring is proposed for hydrology stream stability and vegetation. The monitoring plan will be designed in accordance with Stream Mitigation Guidelines (USACE *et. al*, 2003) and in coordination with EEP. Results will be documented on an annual basis, with the associated reports submitted to EEP as evidence that goals are being achieved.

# 6.2 Vegetation

Vegetation success at the mitigation site will be measured for survivability over a five year monitoring period. Survivability will be based on achieving at least 320 stems per acre after three years and 260 stems per acre after five years. A survey of vegetation during the growing season (mid-March to early November) will be conducted annually over the five year monitoring period in order to verify survivability of the installed plantings. This survey will track the total mortality on an annual basis and be used to calculate survivability at the end of three and five years. Survivability of less than 320 stems/acre at the end of three years and less than 260 stems/acre at the end of five years may require the installation of additional plantings as replacement for the mortality. Vegetation monitoring protocols will be included in the restoration plans and will be developed through on-going coordination with EEP.

# 6.3 Schedule / Reporting

Mulkey will initiate requests for permits from the USACE, DWQ, and Land Quality Section to begin construction of the Site once this restoration plan is approved by NCEEP. As soon as permits are issued, Mulkey will begin construction of the proposed stream.

It is anticipated that it will take approximately 1 year to complete the stream restoration activities and planting. Mulkey anticipates completion by June 2008.

#### 7.0 References

- Daniels, R.B., Buol, S.W., Kleiss, H.J. and C.A. Ditzler. 1999. Soil Systems in North Carolina. North Carolina State University, Soil Science Department. Raleigh, NC. Technical Bulletin 314. January 1999.
- FEMA. 1990. FIRM. Insurance Rate Map. Polk County, North Carolina and incorporated areas. Panel 370194-A. 01/1/1987.
- Griffith, G.E., Omernik, J.M., Comstock, J.A., Schafale, M.P., McNab, W.H., Lenat, D.R., MacPherson, T.F., Glover, J.B., and V.B. Shelburne. 2002. Ecoregions of North Carolina and South Carolina, (color poster with map, descriptive text, summary tables, and photographs): Reston, Virginia, USGS (map scale 1:1,500,000).
- Keenan, Scott, J. Craig Harris and L. Lee Mallard. 1998. Soil Survey of Polk County, North Carolina. US Department of Agriculture, Natural Resources Conservation Service.
- NCDWQ. 2003. Basin Wide Assessment Report, Broad River Basin. North Carolina Department of Environment and Natural Resources. Division of Water Quality. Raleigh, NC.
- NCDWQ. 2004a. North Carolina Waterbodies Reports. Basinwide Information Management System. North Carolina Department of Environment and Natural Resources. Division of Water Quality. Raleigh, NC. Classification 02/21/2006. http://h2o.enr.state.nc.us/bims/Reports/reportsWB.html
- NCDWQ. 2004b. North Carolina Water Quality Assessment and Impaired Waters List (2004 Integrated 305(b) and 303(d) Report). Public Review Draft. North Carolina Department of Environment and Natural Resources. Division of Water Quality. Raleigh, NC.
- NCNHP. 2005. North Carolina Natural Heritage Program. Element Occurrence Search. Polk County. <u>http://www.ncsparks.net/nhp/elements2.fm.</u> December, 2005.
- NRCS. 2005. Hydric Soil Series Lists, Hydric Soils of North Carolina. United States Department of Agriculture, Natural Resources Conservation Service. <u>ftp://ftp-fc.sc.egov.usda.gov/NSSC/Hydric\_Soils/Lists/nc.xls</u>.
- Rosgen, David. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs Colorado.
- Rosgen, David. 1994. A Classification of Natural Rivers. Catena 22 (169-199). Elsevier Science, Amsterdam, The Netherlands.
- USACE, USEPA, NCWRC, and NCDWQ. 2003. Stream Mitigation Guidelines. April 2003.
- USFWS. 2003. United States Fish and Wildlife Service. Polk County Endangered Species, Threatened Species, and Federal Species of Concern. http://web.ncusfws.org/es/cntylist/polk.html. Updated 03/08/2006.

|                                     | Table 1. Project Restoration Structure and Objectives               |                  |                      |                            |                             |                                                            |  |  |  |  |  |
|-------------------------------------|---------------------------------------------------------------------|------------------|----------------------|----------------------------|-----------------------------|------------------------------------------------------------|--|--|--|--|--|
|                                     | Project Number D06027-B (Little White Oak Creek Stream Restoration) |                  |                      |                            |                             |                                                            |  |  |  |  |  |
| Restoration<br>Segment/<br>Reach ID | Station Range                                                       | Restoration Type | Priority<br>Approach | Existing Linear<br>Footage | Designed Linear<br>Footage* | Comment                                                    |  |  |  |  |  |
| R1                                  | 0+00-76+43                                                          | Restoration      | P2                   | 6530                       | 7643                        | Restore pattern, dimension, and profile through the reach. |  |  |  |  |  |
| R1A                                 | 0+00-12+25                                                          | Restoration      | P1/P2                | 906                        | 1225                        | Restore pattern, dimension, and profile through the reach. |  |  |  |  |  |
| R2 Upper                            | 0+00-51+46                                                          | Restoration      | P2                   | 3982                       | 5146                        | Restore pattern, dimension, and profile through the reach. |  |  |  |  |  |
| R2 Lower                            | 51+46-73+37                                                         | Restoration      | P2                   | 1996                       | 2191                        | Restore pattern, dimension, and profile through the reach. |  |  |  |  |  |
| R2A                                 | 0+00-3+79                                                           | Restoration      | P2                   | 287                        | 379                         | Restore pattern, dimension, and profile through the reach. |  |  |  |  |  |
| R2B                                 | 0+00-16+54                                                          | Restoration      | P1/P2                | 1237                       | 1654                        | Restore pattern, dimension, and profile through the reach. |  |  |  |  |  |
| R2D                                 | 0+00-8+60                                                           | Restoration      | P1/P2                | 549                        | 860                         | Restore pattern, dimension, and profile through the reach. |  |  |  |  |  |

\*This measurement includes permanent stream crossings not counted in the total footage for mitigation.

| Reach    | Drainage Area (Acres) |
|----------|-----------------------|
| R1 Upper | 2785.00               |
| R1 Lower | 2852.68               |
| R1A      | 67.39                 |
| R1B      | 32.80                 |
| R2 Upper | 3966.91               |
| R2 Lower | 6944.59               |
| R2A      | 345.04                |
| R2B      | 74.05                 |
| R2C      | 63.83                 |
| R2D      | 31.65                 |
| Total    | 6944.59               |

| Table III. Land Use of Watershed         Project Number D06027-B (Little White Oak Stream Restoration) |     |       |  |  |  |  |  |                             |
|--------------------------------------------------------------------------------------------------------|-----|-------|--|--|--|--|--|-----------------------------|
|                                                                                                        |     |       |  |  |  |  |  | Land Use Acreage Percentage |
| Transitional                                                                                           | 8   | 1.3%  |  |  |  |  |  |                             |
| Deciduous Forest                                                                                       | 3   | 0.4%  |  |  |  |  |  |                             |
| Evergreen Forest                                                                                       | 99  | 15.3% |  |  |  |  |  |                             |
| Mixed Forest                                                                                           | 298 | 46.1% |  |  |  |  |  |                             |
| Pasture/Hay                                                                                            | 238 | 36.7% |  |  |  |  |  |                             |
| Row Crops                                                                                              | 2   | 0.2%  |  |  |  |  |  |                             |

|    |                                             | 1        | Existing Channel |                                               | Proposed Reach | 1 1               | Reference Reach   |
|----|---------------------------------------------|----------|------------------|-----------------------------------------------|----------------|-------------------|-------------------|
| -  | Variables                                   | NAME     | R1               | <u>                                      </u> | R1             |                   | UT to Ostin Creek |
|    | Stream Type                                 | MAINE    | Degraded E5      |                                               | C5             | -                 | C4/1              |
|    | Drainage Area, sq. mi (acres)               |          | 4.46(2854.4)     |                                               | 4.46(2854.4)   |                   | 0.867(554.9)      |
|    | Bankfull Width, ft (Wbkf)                   | Mean:    | 18.43            |                                               | 4.40(2854.4)   | Mean:             | 18.52             |
|    | Balikiuli widili, it (woki)                 | Minimum: | 16.55            | Mean:                                         | 25.70          | Minimum:          | 15.97             |
|    |                                             |          |                  | Wiedii.                                       | 25.70          | Maximum:          | 20.60             |
| -  | D 101110 D 110(1110                         | Maximum: | 20.31            |                                               |                |                   |                   |
|    | Bankfull Mean Depth, ft (dbkf)              | Mean:    | 3.32             | Maria                                         | 2.02           | Mean:             | 1.64              |
|    |                                             | Minimum: | 3.20             | Mean:                                         | 2.02           | Minimum:          | 1.58              |
|    |                                             | Maximum: | 3.43             |                                               |                | Maximum:          | 1.72              |
|    | Width/Depth Ratio (Wbkf/dbkf)               | Mean:    | 5.55             |                                               |                | Mean:             | 11.34             |
|    |                                             | Minimum: | 5.17             | Mean:                                         | 12.70          | Minimum:          | 9.28              |
|    |                                             | Maximum: | 5.92             |                                               |                | Maximum:          | 12.72             |
|    | Bankfull Cross-Sectional Area, sq ft        | Mean:    | 61.33            |                                               |                | Mean:             | 30.25             |
|    | (Abkf)                                      | Minimum: | 52.94            | Mean:                                         | 52.00          | Minimum:          | 27.41             |
|    |                                             | Maximum: | 69.72            |                                               |                | Maximum:          | 33.37             |
| 7. | Bankfull Mean Velocity, fps (Vbkf)          |          |                  |                                               |                |                   |                   |
|    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,          | Mean:    | 4.4              | Mean:                                         | 5.2            | Mean:             | 4.2               |
|    | Bankfull Discharge, cfs (Qbkf)              | Mean:    | 271              | Mean:                                         | 271            | Mean:             | 128               |
|    |                                             |          | 2/1              | Mean.                                         | 2/1            |                   | 120               |
|    | Maximum Banl-f-II Death 0 (1-110            | Moore    | 2.60             | Maari                                         | 2.24           | Marni             | 1.00              |
|    | Maximum Bankfull Depth, ft (dmbkf)          | Mean:    | 3.69             | Mean:                                         | 2.34           | Mean:             | 1.90              |
|    | 3                                           | Minimum: | 2.37             | Minimum:                                      | 1.90           | Minimum:          | 1.54              |
|    |                                             | Maximum: | 5.00             | Maximum:                                      | 2.91           | Maximum:          | 2.36              |
|    | Maximum Riffle Depth/Mean Riffle            | Mean:    | 1.11             | Mean:                                         | 1.16           | Mean:             | 1.16              |
|    | Depth (dmbkf/dbkf)                          | Minimum: | 0.71             | Minimum:                                      | 0.94           | Minimum:          | 0.94              |
|    |                                             | Maximum: | 1.51             | Maximum:                                      | 1.44           | Maximum:          | 1.44              |
|    | Ratio of Low Bank Height to Maximum         | Mean:    | 2.20             | Mean:                                         | 1.00           | Mean:             | 1.23              |
|    | Bankfull Depth (LBH/dmbkf)                  | Minimum: | 1.52             | Minimum:                                      | 1.00           | Minimum:          | 1.01              |
|    |                                             | Maximum: | 2.95             | Maximum:                                      | 1.00           | Maximum:          | 1.42              |
| v  | Vidth of Flood Prone Area, ft (Wfpa)        | Mean:    | 94.09            | Mean:                                         | 98.41          | Mean:             | 70.18             |
|    | indui of Flood Florid Florid, it (inipu)    | Minimum: | 69.59            | Minimum:                                      | 90.79          | Minimum:          | 67.15             |
|    | *                                           |          |                  | 100 mm                                        |                | Maximum:          | 72.78             |
|    |                                             | Maximum: | 118.58           | Maximum:                                      | 113.62         |                   |                   |
|    | Entrenchment Ratio (Wfpa/Wbkf)              | Mean:    | 5.02             | Mean:                                         | 3.83           | Mean:             | 3.83              |
|    |                                             | Minimum: | 4.20             | Minimum:                                      | 3.53           | Minimum:          | 3.53              |
|    |                                             | Maximum: | 5.84             | Maximum:                                      | 4.42           | Maximum:          | 4.42              |
|    | Meander Length, ft (Lm)                     | Mean:    | 135.70           | Mean:                                         | 130.41         | Mean:             | 94.00             |
|    |                                             | Minimum: | 107.00           | Minimum:                                      | 45.78          | Minimum:          | 33.00             |
|    |                                             | Maximum: | 189.30           | Maximum:                                      | 215.04         | Maximum:          | 155.00            |
|    | Meander Length Ratio                        | Mean:    | 7.36             | Mean:                                         | 5.07           | Mean:             | 5.07              |
|    | (Lm/Wbkf)                                   | Minimum: | 5.81             | Minimum:                                      | 1.78           | Minimum:          | 1.78              |
|    |                                             | Maximum: | 10.27            | Maximum:                                      | 8.37           | Maximum:          | 8.37              |
|    | Radius of Curvature, ft (Rc)                | Mean:    | 37.70            | Mean:                                         | 67.98          | Mean:             | 49.00             |
| 1  |                                             | Minimum: | 23.40            | Minimum:                                      | 26.36          | Minimum:          | 19.00             |
|    |                                             | Maximum: | 63.80            | Maximum:                                      | 159.54         | Maximum:          | 115.00            |
| 1  | Potio of Padius of Current to De 16.1       |          |                  | Maximum:<br>Mean:                             |                | Maximum.<br>Mean: | 2.65              |
|    | Ratio of Radius of Curvature to Bankfull    | Mean:    | 2.05             | 0.0000000000000000000000000000000000000       | 2.65           | 101206-00212259   |                   |
|    | Width (Rc/Wbkf)                             | Minimum: | 1.27             | Minimum:                                      | 1.03           | Minimum:          | 1.03              |
|    |                                             | Maximum: | 3.46             | Maximum:                                      | 6.21           | Maximum:          | 6.21              |
| I  | Belt Width, ft (Wblt)                       | Mean:    | 39.80            | Mean:                                         | 92.95          | Mean:             | 67.00             |
|    |                                             | Minimum: | 22.00            | Minimum:                                      | 49.94          | Minimum:          | 36.00             |
| _  |                                             | Maximum: | 61.60            | Maximum:                                      | 208.10         | Maximum:          | 150.00            |
|    | Meander Width Ratio (Wblt/Wbkf)             | Mean:    | 2.16             | Mean:                                         | 3.62           | Mean:             | 3.62              |
|    |                                             | Minimum: | 1.19             | Minimum:                                      | 1.94           | Minimum:          | 1.94              |
|    |                                             | Maximum: | 3.34             | Maximum:                                      | 8.10           | Maximum:          | 8.10              |
|    | Low Bank Height, ft (LBH)                   | Mean:    | 7.68             | Mean:                                         | 2.34           | Mean:             | 2.30              |
|    |                                             | Minimum: | 6.32             | Minimum:                                      | 1.90           | Minimum:          | 2.09              |
|    |                                             | Maximum: | 8.90             | Maximum:                                      | 2.91           | Maximum:          | 2.67              |
|    | Sinuosity (K)                               | Maximum. |                  | Maximum.                                      | 5.<br>         | WidAnillum.       |                   |
|    |                                             | Mean:    | 1.16             | Mean:                                         | 1.17           | Mean:             | 1.46              |
|    | Valley Slope (VS)                           | Mean:    | 0.00330          | Mean:                                         | 0.00330        | Mean:             | 0.01310           |
| 3. | Average Water Surface Slope (S) =<br>(VS/K) | Mean:    | 0.00284          | Mean:                                         | 0.00282        | Mean:             | 0.00897           |
| 1. | Pool Slope (Sp)                             | Mean:    | 0.00168          | Mean:                                         | 0.00038        | Mean:             | 0.00120           |
|    |                                             | Minimum: | 0.00000          | Minimum:                                      | 0.00000        | Minimum:          | 0.00000           |
|    |                                             | Maximum: | 0.00548          | Maximum:                                      | 0.00136        | Maximum:          | 0.00433           |
|    | Ratio of Pool Slope to Average Water        | Mean:    | 0.59             | Mean:                                         | 0.13           | Mean:             | 0.13              |
|    | Slope (Sp/S)                                | Minimum: | 0.00             | Minimum:                                      | 0.00           | Minimum:          | 0.00              |
|    | (op. o)                                     | Maximum: | 1.93             | Maximum:                                      | 0.48           | Maximum:          | 0.48              |

| Table IV. Morphological Table |                                                                                                                  |                                                                                                                                         |                                                                                                                 |                   |              |                   |                                                                                                                |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|--------------|-------------------|----------------------------------------------------------------------------------------------------------------|--|
| _                             | and the second | Project I.D. No. D06027-B (Little White Oak Stream Restoration Project)           Existing Channel         Proposed Reach         Refer |                                                                                                                 |                   |              |                   |                                                                                                                |  |
| -                             | Variables                                                                                                        | NAME                                                                                                                                    | Existing Channel<br>R1                                                                                          |                   | R1           |                   | Reference Read<br>UT to Ostin Cre                                                                              |  |
| 26                            | Riffle Slope (water surface facet slope)                                                                         | Mean:                                                                                                                                   | 0.01046                                                                                                         | Mean:             | 0.00892      | Mean:             | 0.02837                                                                                                        |  |
| 26.                           | (Srif)                                                                                                           | Minimum:                                                                                                                                | 0.00123                                                                                                         | Minimum:          | 0.00199      | Minimum:          | 0.00632                                                                                                        |  |
|                               | (SIII)                                                                                                           | Maximum:                                                                                                                                | 0.11709                                                                                                         | Maximum:          | 0.02059      | Maximum:          | 0.06551                                                                                                        |  |
| 07                            | Ratio of Riffle Slope to Average Water                                                                           | Maximum:<br>Mean:                                                                                                                       | 3.68                                                                                                            | Mean:             | 3.16         | Mean:             | 3.16                                                                                                           |  |
| 27.                           | Slope (Srif/S)                                                                                                   | Minimum:                                                                                                                                | 0.43                                                                                                            | Minimum:          | 0.70         | Minimum:          | 0.70                                                                                                           |  |
|                               | Slope (Slip's)                                                                                                   | Maximum:                                                                                                                                | 41.16                                                                                                           | Maximum:          | 7.30         | Maximum:          | 7.30                                                                                                           |  |
| 20                            | Run Slope (water surface facet slope)                                                                            | Mean:                                                                                                                                   | 0.00433                                                                                                         | Mean:             | 0.00762      | Mean:             | 0.02423                                                                                                        |  |
| 28.                           | (Srun)                                                                                                           | Minimum:                                                                                                                                |                                                                                                                 | Minimum:          | 0.00782      | Minimum:          | 0.00903                                                                                                        |  |
|                               | (siui)                                                                                                           | Maximum:                                                                                                                                | 0.00051<br>0.01120                                                                                              | Maximum:          | 0.02484      | Maximum:          | 0.07902                                                                                                        |  |
| 0.0                           | Detis Des Class / Assess Water Conferen                                                                          | Mean:                                                                                                                                   | 1.52                                                                                                            | Mean:             | 2.70         | Mean:             | 2.70                                                                                                           |  |
| 29.                           | Ratio Run Slope/Average Water Surface<br>Slope (Srun/S)                                                          | Minimum:                                                                                                                                | Teach shared                                                                                                    | Minimum:          | 1.01         | Minimum:          | 1.01                                                                                                           |  |
|                               | Slope (SluivS)                                                                                                   |                                                                                                                                         | 0.18                                                                                                            | 101 ALS 111       | Lowerson -   | Maximum:          | 8.81                                                                                                           |  |
|                               |                                                                                                                  | Maximum:                                                                                                                                | 3.94                                                                                                            | Maximum:          | 8.81         | Mean:             | the second s |  |
| 30.                           |                                                                                                                  | Mean:                                                                                                                                   | 0.00371                                                                                                         | Mean:             | 0.00102      | 10-10 8 NOT STOR  | 0.00325                                                                                                        |  |
|                               | slope) (Sg)                                                                                                      | Minimum:                                                                                                                                | 0.00179                                                                                                         | Minimum:          | 0.00000      | Minimum:          | 0.00000                                                                                                        |  |
|                               |                                                                                                                  | Maximum:                                                                                                                                | 0.00585                                                                                                         | Maximum:          | 0.00410      | Maximum:          | 0.01304                                                                                                        |  |
| 31.                           | Ratio Glide Slope/Average Water                                                                                  | Mean:                                                                                                                                   | 1.30                                                                                                            | Mean:             | 0.36         | Mean:             | 0.36                                                                                                           |  |
|                               | Surface Slope (Sg/S)                                                                                             | Minimum:                                                                                                                                | 0.63                                                                                                            | Minimum:          | 0.00         | Minimum:          | 0.00                                                                                                           |  |
|                               |                                                                                                                  | Maximum:                                                                                                                                | 2.06                                                                                                            | Maximum:          | 1.45         | Maximum:          | 1.45                                                                                                           |  |
| 32.                           | Maximum Pool Depth, ft (dpool)                                                                                   | Mean:                                                                                                                                   | 4.70                                                                                                            | Mean:             | 3.55         | Mean:             | 2.88                                                                                                           |  |
|                               |                                                                                                                  | Minimum:                                                                                                                                | 3.50                                                                                                            | Minimum:          | 2.68         | Minimum:          | 2.17                                                                                                           |  |
|                               |                                                                                                                  | Maximum:                                                                                                                                | 6.60                                                                                                            | Maximum:          | 4.10         | Maximum:          | 3.32                                                                                                           |  |
| 33.                           | Ratio of Maximum Pool Depth to                                                                                   | Mean:                                                                                                                                   | 1.42                                                                                                            | Mean:             | 1.76         | Mean:             | 1.76                                                                                                           |  |
|                               | Mean Depth (dpool/dbkf)                                                                                          | Minimum:                                                                                                                                | 1.06                                                                                                            | Minimum:          | 1.32         | Minimum:          | 1.32                                                                                                           |  |
|                               |                                                                                                                  | Maximum:                                                                                                                                | 1.99                                                                                                            | Maximum:          | 2.02         | Maximum:          | 2.02                                                                                                           |  |
| 34.                           | Max Run Depth, ft (drun)                                                                                         | Mean:                                                                                                                                   | 4.13                                                                                                            | Mean:             | 2.89         | Mean:             | 2.34                                                                                                           |  |
|                               |                                                                                                                  | Minimum:                                                                                                                                | 2.69                                                                                                            | Minimum:          | 2.73         | Minimum:          | 2.21                                                                                                           |  |
|                               |                                                                                                                  | Maximum:                                                                                                                                | 5.79                                                                                                            | Maximum:          | 3.36         | Maximum:          | 2.72                                                                                                           |  |
| 35.                           | Ratio Max Run Depth/Bankfull Mean                                                                                | Mean:                                                                                                                                   | 1.25                                                                                                            | Mean:             | 1.43         | Mean:             | 1.43                                                                                                           |  |
|                               | Depth (drun/dbkf)                                                                                                | Minimum:                                                                                                                                | 0.81                                                                                                            | Minimum:          | 1.35         | Minimum:          | 1.35                                                                                                           |  |
|                               |                                                                                                                  | Maximum:                                                                                                                                | 1.75                                                                                                            | Maximum:          | 1.66         | Maximum:          | 1.66                                                                                                           |  |
| 36.                           | Maximum Glide Depth, ft (dg)                                                                                     | Mean:                                                                                                                                   | 4.20                                                                                                            | Mean:             | 2.59         | Mean:             | 2.10                                                                                                           |  |
|                               |                                                                                                                  | Minimum:                                                                                                                                | 2.72                                                                                                            | Minimum:          | 2.09         | Minimum:          | 1.69                                                                                                           |  |
|                               |                                                                                                                  | Maximum:                                                                                                                                | 5.48                                                                                                            | Maximum:          | 3.13         | Maximum:          | 2.54                                                                                                           |  |
| 37.                           | Ratio of Max Glide Depth/Bankfull                                                                                | Mean:                                                                                                                                   | 1.27                                                                                                            | Mean:             | 1.28         | Mean:             | 1.28                                                                                                           |  |
|                               | Mean Depth (dg/dbkf)                                                                                             | Minimum:                                                                                                                                | 0.82                                                                                                            | Minimum:          | 1.03         | Minimum:          | 1.03                                                                                                           |  |
|                               |                                                                                                                  | Maximum:                                                                                                                                | 1.65                                                                                                            | Maximum:          | 1.55         | Maximum:          | 1.55                                                                                                           |  |
| 38                            | Pool Width, ft (Wbkfp)                                                                                           | Mean:                                                                                                                                   | 25.56                                                                                                           | Mean:             | 21.26        | Mean:             | 15.33                                                                                                          |  |
|                               |                                                                                                                  | Minimum:                                                                                                                                | 25.37                                                                                                           | Minimum:          | 16.80        | Minimum:          | 12.11                                                                                                          |  |
|                               |                                                                                                                  | Maximum:                                                                                                                                | 25.74                                                                                                           | Maximum:          | 26.22        | Maximum:          | 18.90                                                                                                          |  |
| 30                            | Ratio of Pool Width to Bankfull Width                                                                            | Mean:                                                                                                                                   | 1.39                                                                                                            | Mean:             | 0.83         | Mean:             | 0.83                                                                                                           |  |
| 55.                           | (Wbkfp/Wbkf)                                                                                                     | Minimum:                                                                                                                                | 1.38                                                                                                            | Minimum:          | 0.65         | Minimum:          | 0.65                                                                                                           |  |
|                               |                                                                                                                  | Maximum:                                                                                                                                | 1.40                                                                                                            | Maximum:          | 1.02         | Maximum:          | 1.02                                                                                                           |  |
| 40.                           | Pool Cross Sectional Area, sq ft (Apool)                                                                         | Mean:                                                                                                                                   | 86.54                                                                                                           | Mean:             | 49.16        | Mean:             | 28.59                                                                                                          |  |
| 10.                           |                                                                                                                  | Minimum:                                                                                                                                | 70.48                                                                                                           | Minimum:          | 36.58        | Minimum:          | 21.28                                                                                                          |  |
|                               |                                                                                                                  | Maximum:                                                                                                                                | 102.59                                                                                                          | Maximum:          | 66.74        | Maximum:          | 38.82                                                                                                          |  |
| 41.                           | Ratio of Pool Area to Bankfull Riffle                                                                            | Mean:                                                                                                                                   | 1.41                                                                                                            | Mean:             | 0.95         | Mean:             | 0.95                                                                                                           |  |
| 41.                           | Area (Apool/Abkf)                                                                                                | Minimum:                                                                                                                                | 1.15                                                                                                            | Minimum:          | 0.70         | Minimum:          | 0.70                                                                                                           |  |
|                               |                                                                                                                  | Maximum:                                                                                                                                | 1.67                                                                                                            | Maximum:          | 1.28         | Maximum:          | 1.28                                                                                                           |  |
| 42                            | Pool to Pool Spacing, ft (p-p)                                                                                   | Mean:                                                                                                                                   | 140.94                                                                                                          | Mean:             | 109.41       | Mean:             | 78.86                                                                                                          |  |
| 42.                           | roor to roor opacing, it (p-p)                                                                                   | Minimum:                                                                                                                                | 50.62                                                                                                           | Minimum:          | 69.78        | Minimum:          | 50.30                                                                                                          |  |
|                               |                                                                                                                  | Maximum:                                                                                                                                | 402.57                                                                                                          | Maximum:          | 146.84       | Maximum:          | 105.84                                                                                                         |  |
| 12                            | Ratio of p-p Spacing to Bankfull Width                                                                           | Mean:                                                                                                                                   | 7.65                                                                                                            | Mean:             | 4.26         | Mean:             | 4.26                                                                                                           |  |
| 43.                           | (p-p/Wbkf)                                                                                                       | Minimum:                                                                                                                                | 2.75                                                                                                            | Minimum:          | 2.72         | Minimum:          | 2.72                                                                                                           |  |
|                               | (h-h, 110kr)                                                                                                     | 1 m m m m m m                                                                                                                           | 2.75                                                                                                            | Maximum:          | 5.71         | Maximum:          | 5.71                                                                                                           |  |
|                               | Deall anoth A (La)                                                                                               | Maximum:                                                                                                                                | the second se | Maximum:<br>Mean: | 48.71        | Maximum.<br>Mean: | 35.11                                                                                                          |  |
| 44.                           | Pool Length, ft (Lp)                                                                                             | Mean:                                                                                                                                   | 39.34                                                                                                           | Mean:<br>Minimum: |              | Mean:<br>Minimum: | 18.34                                                                                                          |  |
|                               |                                                                                                                  | Minimum:                                                                                                                                | 11.35                                                                                                           |                   | 25.44        |                   | 62.87                                                                                                          |  |
|                               | D. C. II. I. D. IAU                                                                                              | Maximum:                                                                                                                                | 87.94                                                                                                           | Maximum:          | 87.22        | Maximum:          | 1.90                                                                                                           |  |
| 45.                           | Ratio of Pool Length to Bankfull Width (Lp/Wbkf)                                                                 | Mean:<br>Minimum:                                                                                                                       | 2.13<br>0.62                                                                                                    | Mean:<br>Minimum: | 1.90<br>0.99 | Mean:<br>Minimum: | 0.99                                                                                                           |  |
|                               |                                                                                                                  |                                                                                                                                         |                                                                                                                 |                   |              |                   |                                                                                                                |  |

| -  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,<br>                                     | D06027-B (Little W<br>Existing Channel                                                                         |                     | Proposed Reach | T        | Reference Reac   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------|----------------|----------|------------------|
| -  | Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NAME                                      | R1A                                                                                                            |                     | R1A            |          | UT to Ostin Cree |
|    | Stream Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | Degraded B6c                                                                                                   |                     | C5             |          | C4/1             |
| 2. | Drainage Area, sq. mi (acres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | 0.11(70.4)                                                                                                     |                     | 0.11(70.4)     |          | 0.867(554.9)     |
| i. | Bankfull Width, ft (Wbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mean:                                     | 7.72                                                                                                           |                     |                | Mean:    | 18.52            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minimum:                                  | 4.51                                                                                                           | Mean:               | 7.97           | Minimum: | 15.97            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum:                                  | 10.93                                                                                                          |                     |                | Maximum: | 20.60            |
| ŀ. | Bankfull Mean Depth, ft (dbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mean:                                     | 0.45                                                                                                           |                     |                | Mean:    | 1.64             |
|    | i, (,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                                  | 0.36                                                                                                           | Mean:               | 0.63           | Minimum: | 1.58             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum:                                  | 0.54                                                                                                           |                     |                | Maximum: | 1.72             |
| j. | Width/Depth Ratio (Wbkf/dbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean:                                     | 16.38                                                                                                          |                     |                | Mean:    | 11.34            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minimum:                                  | 12.53                                                                                                          | Mean:               | 12.70          | Minimum: | 9.28             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum:                                  | 20.24                                                                                                          | C Store Constrained | Webbar Larg    | Maximum: | 12.72            |
| 5. | Bankfull Cross-Sectional Area, sq ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean:                                     | 3.74                                                                                                           |                     |                | Mean:    | 30.25            |
|    | (Abkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimum:                                  | 1.62                                                                                                           | Mean:               | 5.00           | Minimum: | 27.41            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum:                                  | 5.85                                                                                                           |                     |                | Maximum: | 33.37            |
| 1. | Bankfull Mean Velocity, fps (Vbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                                                                                                |                     |                |          |                  |
|    | <i>27</i> 1 <i>2 7</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mean:                                     | 5.3                                                                                                            | Mean:               | 3.9            | Mean:    | 4.2              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                                                                                                                |                     |                |          |                  |
| 3. | Bankfull Discharge, cfs (Qbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                                                                                                                |                     |                |          |                  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean:                                     | 20                                                                                                             | Mean:               | 20             | Mean:    | 128              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                                                                                                                |                     | ×              |          |                  |
| ). | Maximum Bankfull Depth, ft (dmbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mean:                                     | 0.86                                                                                                           | Mean:               | 0.73           | Mean:    | 1.90             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minimum:                                  | 0.54                                                                                                           | Minimum:            | 0.59           | Minimum: | 1.54             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum:                                  | 1.18                                                                                                           | Maximum:            | 0.90           | Maximum: | 2.36             |
| 0. | Maximum Riffle Depth/Mean Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mean:                                     | 1.91                                                                                                           | Mean:               | 1.16           | Mean:    | 1.16             |
|    | Depth (dmbkf/dbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Minimum:                                  | 1.20                                                                                                           | Minimum:            | 0.94           | Minimum: | 0.94             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum:                                  | 2.62                                                                                                           | Maximum:            | 1.44           | Maximum: | 1.44             |
| 1. | Ratio of Low Bank Height to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mean:                                     | 3.70                                                                                                           | Mean:               | 1.00           | Mean:    | 1.23             |
|    | Maximum Bankfull Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimum:                                  | 3.11                                                                                                           | Minimum:            | 1.00           | Minimum: | 1.01             |
|    | (LBH/dmbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximum:                                  | 4.30                                                                                                           | Maximum:            | 1.00           | Maximum: | 1.42             |
| 2. | Width of Flood Prone Area, ft (Wfpa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean:                                     | 13.83                                                                                                          | Mean:               | 30.52          | Mean:    | 70.18            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minimum:                                  | 8.58                                                                                                           | Minimum:            | 28.15          | Minimum: | 67.15            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum:                                  | 19.07                                                                                                          | Maximum:            | 35.23          | Maximum: | 72.78            |
| 3. | Entrenchment Ratio (Wfpa/Wbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mean:                                     | 1.82                                                                                                           | Mean:               | 3.83           | Mean:    | 3.83             |
|    | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Minimum:                                  | 1.74                                                                                                           | Minimum:            | 3.53           | Minimum: | 3.53             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum:                                  | 1.90                                                                                                           | Maximum:            | 4.42           | Maximum: | 4.42             |
| 4  | Meander Length, ft (Lm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mean:                                     | 0.00                                                                                                           | Mean:               | 40.44          | Mean:    | 94.00            |
|    | The many standard and stan | Minimum:                                  | 0.00                                                                                                           | Minimum:            | 14.20          | Minimum: | 33.00            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum:                                  | 0.00                                                                                                           | Maximum:            | 66.68          | Maximum: | 155.00           |
| 5  | Meander Length Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean:                                     | 0.00                                                                                                           | Mean:               | 5.07           | Mean:    | 5.07             |
|    | (Lm/Wbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Minimum:                                  | 0.00                                                                                                           | Minimum:            | 1.78           | Minimum: | 1.78             |
|    | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Maximum:                                  | 0.00                                                                                                           | Maximum:            | 8.37           | Maximum: | 8.37             |
| 6  | Radius of Curvature, ft (Rc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mean:                                     | 0.00                                                                                                           | Mean:               | 21.08          | Mean:    | 49.00            |
| 0. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minimum:                                  | 0.00                                                                                                           | Minimum:            | 8.17           | Minimum: | 19.00            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum:                                  | 0.00                                                                                                           | Maximum:            | 49.47          | Maximum: | 115.00           |
| 7  | Ratio of Radius of Curvature to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean:                                     | 0.00                                                                                                           | Mean:               | 2.65           | Mean:    | 2.65             |
| •• | Width (Rc/Wbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minimum:                                  | 0.00                                                                                                           | Minimum:            | 1.03           | Minimum: | 1.03             |
|    | (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maximum:                                  | 0.00                                                                                                           | Maximum:            | 6.21           | Maximum: | 6.21             |
| 8. | Belt Width, ft (Wblt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                                     | 0.00                                                                                                           | Mean:               | 28.82          | Mean:    | 67.00            |
| 0. | ser man, r (mony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minimum:                                  | 0.00                                                                                                           | Minimum:            | 15.49          | Minimum: | 36.00            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum:                                  | 0.00                                                                                                           | Maximum:            | 64.53          | Maximum: | 150.00           |
| 0  | Meander Width Ratio (Wblt/Wbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean:                                     | 0.00                                                                                                           | Mean:               | 3.62           | Mean:    | 3.62             |
| 1. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minimum:                                  | 0.00                                                                                                           | Minimum:            | 1.94           | Minimum: | 1.94             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum:                                  | 0.00                                                                                                           | Maximum:            | 8.10           | Maximum: | 8.10             |
| 0  | Low Bank Height, ft (LBH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mean:                                     | 3.00                                                                                                           | Mean:               | 0.73           | Mean:    | 2.30             |
| J. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minimum:                                  | 2.32                                                                                                           | Minimum:            | 0.59           | Minimum: | 2.09             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum:                                  | 3.67                                                                                                           | Maximum:            | 0.90           | Maximum: | 2.67             |
| 1  | Sinuosity (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - And | 5.01                                                                                                           |                     | 0.20           |          |                  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean:                                     | 1.06                                                                                                           | Mean:               | 1.35           | Mean:    | 1.46             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           | 8                                                                                                              |                     |                |          |                  |
| 2  | Valley Slope (VS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           | C 0140-                                                                                                        |                     | 0.01055        |          | 0.04510          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean:                                     | 0.01290                                                                                                        | Mean:               | 0.01290        | Mean:    | 0.01310          |
| 3  | Average Water Surface Slope (S) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                                                                                                |                     |                |          |                  |
| э. | (VS/K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mean:                                     | 0.01217                                                                                                        | Mean:               | 0.00956        | Mean:    | 0.00897          |
|    | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mean.                                     | 0.01217                                                                                                        | mean.               | 0.00950        | mean.    | 0.00027          |
| 1  | Pool Slope (Sp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean:                                     | 0.00000                                                                                                        | Mean:               | 0.00128        | Mean:    | 0.00120          |
| τ. | - cor crope (op)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minimum:                                  | 0.00000                                                                                                        | Minimum:            | 0.00000        | Minimum: | 0.00000          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minimum:<br>Maximum:                      | 0.00000                                                                                                        | Maximum:            |                | Maximum: |                  |
| 5  | Patio of Pool Class to Assess W'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | the second s |                     | 0.00461        |          | 0.00433          |
| 5. | Ratio of Pool Slope to Average Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean:                                     | 0.00                                                                                                           | Mean:               | 0.13           | Mean:    | 0.13             |
|    | Slope (Sp/S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Minimum:                                  | 0.00                                                                                                           | Minimum:            | 0.00           | Minimum: | 0.00             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum:                                  | 0.00                                                                                                           | Maximum:            | 0.48           | Maximum: | 0.48             |

|            | Variables                                | -                    | Existing Channel |                      | Proposed Reach |                   | Reference Reach   |
|------------|------------------------------------------|----------------------|------------------|----------------------|----------------|-------------------|-------------------|
|            |                                          | NAME                 | R1A              |                      | R1A            |                   | UT to Ostin Creel |
| 26.        | Riffle Slope (water surface facet slope) | Mean:                | 0.00000          | Mean:                | 0.03021        | Mean:             | 0.02837           |
|            | (Srif)                                   | Minimum:             | 0.00000          | Minimum:             | 0.00673        | Minimum:          | 0.00632           |
|            | 12° 30.                                  | Maximum:             | 0.00000          | Maximum:             | 0.06977        | Maximum:          | 0.06551           |
| 27.        | Ratio of Riffle Slope to Average         | Mean:                | 0.00             | Mean:                | 3.16           | Mean:             | 3.16              |
|            | Water Slope (Srif/S)                     | Minimum:             | 0.00             | Minimum:             | 0.70           | Minimum:          | 0.70              |
|            |                                          | Maximum:             | 0.00             | Maximum:             | 7.30           | Maximum:          | 7.30              |
| 28.        | Run Slope (water surface facet slope)    | Mean:                | 0.00000          | Mean:                | 0.02580        | Mean:             | 0.02423           |
|            | (Srun)                                   | Minimum:             | 0.00000          | Minimum:             | 0.00962        | Minimum:          | 0.00903           |
|            |                                          | Maximum:             | 0.00000          | Maximum:             | 0.08415        | Maximum:          | 0.07902           |
| 29.        | Ratio Run Slope/Average Water            | Mean:                | 0.00             | Mean:                | 2.70           | Mean:             | 2.70              |
|            | Surface Slope (Srun/S)                   | Minimum:             | 0.00             | Minimum:             | 1.01           | Minimum:          | 1.01              |
|            |                                          | Maximum:             | 0.00             | Maximum:             | 8.81           | Maximum:          | 8.81              |
| 30.        | Slope of Glide (water surface facet      | Mean:                | 0.00000          | Mean:                | 0.00346        | Mean:             | 0.00325           |
|            | slope) (Sg)                              | Minimum:             | 0.00000          | Minimum:             | 0.00000        | Minimum:          | 0.00000           |
|            |                                          | Maximum:             | 0.00000          | Maximum:             | 0.01389        | Maximum:          | 0.01304           |
| 31.        |                                          | Mean:                | 0.00             | Mean:                | 0.36           | Mean:             | 0.36              |
|            | Surface Slope (Sg/S)                     | Minimum:             | 0.00             | Minimum:             | 0.00           | Minimum:          | 0.00              |
|            |                                          | Maximum:             | 0.00             | Maximum:             | 1.45           | Maximum:<br>Mean: | 2.88              |
|            | Maximum Pool Depth, ft (dpool)           | Mean:                | 1.38             | Mean:                | 0.83           | Mean:<br>Minimum: | 2.88              |
|            |                                          | Minimum:<br>Maximum: | 1.11             | Minimum:<br>Maximum: | 1.27           | Maximum:          | 3.32              |
|            | Partia of Manimum Paul Darath to         | Maximum:<br>Mean:    | 1.64 3.07        | Maximum:<br>Mean:    | 1.27           | Mean:             | 1.76              |
|            | Ratio of Maximum Pool Depth to           | Minimum:             | 2.47             | Minimum:             | 1.32           | Minimum:          | 1.32              |
|            | Mean Depth (dpool/dbkf)                  | Maximum:             | 3.64             | Maximum:             | 2.02           | Maximum:          | 2.02              |
| 34.        | Max Run Depth, ft (drun)                 | Mean:                | 0.00             | Mean:                | 0.90           | Mean:             | 2.34              |
|            | Max Kui Depui, it (utui)                 | Minimum:             | 0.00             | Minimum:             | 0.85           | Minimum:          | 2.21              |
|            |                                          | Maximum:             | 0.00             | Maximum:             | 1.04           | Maximum:          | 2.72              |
| 35.        | Ratio Max Run Depth/Bankfull Mean        | Mean:                | 0.00             | Mean:                | 1.43           | Mean:             | 1.43              |
|            | Depth (drun/dbkf)                        | Minimum:             | 0.00             | Minimum:             | 1.35           | Minimum:          | 1.35              |
|            | Dipin (anal)                             | Maximum:             | 0.00             | Maximum:             | 1.66           | Maximum:          | 1.66              |
| 36.        | Maximum Glide Depth, ft (dg)             | Mean:                | 0.00             | Mean:                | 0.80           | Mean:             | 2.10              |
| 50.        | mananan ener separ, n (og)               | Minimum:             | 0.00             | Minimum:             | 0.65           | Minimum:          | 1.69              |
|            |                                          | Maximum:             | 0.00             | Maximum:             | 0.97           | Maximum:          | 2.54              |
| 37.        | Ratio of Max Glide Depth/Bankfull        | Mean:                | 0.00             | Mean:                | 1.28           | Mean:             | 1.28              |
| 57.        | Mean Depth (dg/dbkf)                     | Minimum:             | 0.00             | Minimum:             | 1.03           | Minimum:          | 1.03              |
|            | 1 (6 )                                   | Maximum:             | 0.00             | Maximum:             | 1.55           | Maximum:          | 1.55              |
| 38.<br>39. | Pool Width, ft (Wbkfp)                   | Mean:                | 5.22             | Mean:                | 6.59           | Mean:             | 15.33             |
|            |                                          | Minimum:             | 3.64             | Minimum:             | 5.21           | Minimum:          | 12.11             |
|            |                                          | Maximum:             | 6.79             | Maximum:             | 8.13           | Maximum:          | 18.90             |
|            | Ratio of Pool Width to Bankfull          | Mean:                | 0.68             | Mean:                | 0.83           | Mean:             | 0.83              |
|            | Width (Wbkfp/Wbkf)                       | Minimum:             | 0.47             | Minimum:             | 0.65           | Minimum:          | 0.65              |
|            |                                          | Maximum:             | 0.88             | Maximum:             | 1.02           | Maximum:          | 1.02              |
| 40.        | Pool Cross Sectional Area, sq ft         | Mean:                | 4.66             | Mean:                | 4.73           | Mean:             | 28.59             |
|            | (Apool)                                  | Minimum:             | 4.62             | Minimum:             | 3.52           | Minimum:          | 21.28             |
|            | 0. s.o                                   | Maximum:             | 4.70             | Maximum:             | 6.42           | Maximum:          | 38.82             |
| 41.        | Ratio of Pool Area to Bankfull Riffle    | Mean:                | 1.25             | Mean:                | 0.95           | Mean:             | 0.95              |
|            | Area (Apool/Abkf)                        | Minimum:             | 1.24             | Minimum:             | 0.70           | Minimum:          | 0.70              |
|            |                                          | Maximum:             | 1.26             | Maximum:             | 1.28           | Maximum:          | 1.28              |
| 43.<br>44. | Pool to Pool Spacing, ft (p-p)           | Mean:                | 0.00             | Mean:                | 33.93          | Mean:             | 78.86             |
|            |                                          | Minimum:             | 0.00             | Minimum:             | 21.64          | Minimum:          | 50.30             |
|            |                                          | Maximum:             | 0.00             | Maximum:             | 45.53          | Maximum:          | 105.84            |
|            | Ratio of p-p Spacing to Bankfull         | Mean:                | 0.00             | Mean:                | 4.26           | Mean:             | 4.26              |
|            | Width (p-p/Wbkf)                         | Minimum:             | 0.00             | Minimum:             | 2.72           | Minimum:          | 2.72              |
|            |                                          | Maximum:             | 0.00             | Maximum:             | 5.71           | Maximum:          | 5.71              |
|            | Pool Length, ft (Lp)                     | Mean:                | 0.00             | Mean:                | 15.10          | Mean:             | 35.11             |
|            |                                          | Minimum:             | 0.00             | Minimum:             | 7.89           | Minimum:          | 18.34             |
|            |                                          | Maximum:             | 0.00             | Maximum:             | 27.05          | Maximum:          | 62.87             |
| 45.        | Ratio of Pool Length to Bankfull         | Mean:                | 0.00             | Mean:                | 1.90           | Mean:             | 1.90              |
|            | (Lp/Wbkf)                                | Minimum:             | 0.00             | Minimum:             | 0.99           | Minimum:          | 0.99              |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                                          | . D06027-B (Little W<br>Existing Channel |                      | Proposed Reach | 1                 | Reference Reac   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------|------------------------------------------|----------------------|----------------|-------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Variables                        | NAME                                     | R2 Upper                                 |                      | R2 Upper       |                   | UT to Ostin Cree |
| 1. Strea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | т Туре                           |                                          | Degraded E5                              |                      | C5             |                   | C4/1             |
| 2. Drain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nage Area, sq. mi (acres)        |                                          | 6.20(3966.91)                            |                      | 6.20(3966.91)  |                   | 0.867(554.9)     |
| 3. Bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | full Width, ft (Wbkf)            | Mean:                                    | 24.39                                    |                      |                | Mean:             | 18.52            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Minimum:                                 | 24.27                                    | Mean:                | 31.07          | Minimum:          | 15.97            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Maximum:                                 | 24.50                                    |                      |                | Maximum:          | 20.60            |
| 4. Bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | full Mean Depth, ft (dbkf)       | Mean:                                    | 3.14                                     |                      |                | Mean:             | 1.64             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Minimum:                                 | 3.13                                     | Mean:                | 2.45 -         | Minimum:          | 1.58             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Maximum:                                 | 3.14                                     |                      |                | Maximum:          | 1.72             |
| 5. Widt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | h/Depth Ratio (Wbkf/dbkf)        | Mean:                                    | 7.78                                     |                      | 10 50          | Mean:             | 11.34            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Minimum:                                 | 7.73                                     | Mean:                | 12.70          | Minimum:          | 9.28             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Maximum:                                 | 7.83                                     |                      |                | Maximum:          | 12.72            |
| 1000 TO 100 DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | full Cross-Sectional Area, sq ft | Mean:                                    | 76.43                                    |                      |                | Mean:             | 30.25            |
| (Abk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f)                               | Minimum:                                 | 76.12                                    | Mean:                | 76.00          | Minimum:          | 27.41            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Maximum:                                 | 76.73                                    |                      |                | Maximum:          | 33.37            |
| 7. Bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | full Mean Velocity, fps (Vbkf)   |                                          |                                          |                      |                |                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Mean:                                    | 4.4                                      | Mean:                | 4.5            | Mean:             | 4.2              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                                          |                                          |                      |                |                   |                  |
| 8. Bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | full Discharge, cfs (Qbkf)       |                                          | 10070-017                                |                      |                |                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Mean:                                    | 340                                      | Mean:                | 340            | Mean:             | 128              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                                          |                                          |                      |                |                   |                  |
| 9. Maxi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mum Bankfull Depth, ft (dmbkf)   | Mean:                                    | 4.10                                     | Mean:                | 2.83           | Mean:             | 1.90             |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | Minimum:                                 | 3.61                                     | Minimum:             | 2.30           | Minimum:          | 1.54             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Maximum:                                 | 4.94                                     | Maximum:             | 3.52           | Maximum:          | 2.36             |
| 10. Maxi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mum Riffle Depth/Mean Riffle     | Mean:                                    | 1.31                                     | Mean:                | 1.16           | Mean:             | 1.16             |
| Dept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | h (dmbkf/dbkf)                   | Minimum:                                 | 1.15                                     | Minimum:             | 0.94           | Minimum:          | 0.94             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Maximum:                                 | 1.58                                     | Maximum:             | 1.44           | Maximum:          | 1.44             |
| 11. Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of Low Bank Height to            | Mean:                                    | 1.84                                     | Mean:                | 1.00           | Mean:             | 1.23             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mum Bankfull Depth               | Minimum:                                 | 1.47                                     | Minimum:             | 1.00           | Minimum:          | 1.01             |
| (LBF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I/dmbkf)                         | Maximum:                                 | 2.14                                     | Maximum:             | 1.00           | Maximum:          | 1.42             |
| 12. Widt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h of Flood Prone Area, ft (Wfpa) | Mean:                                    | 164.03                                   | Mean:                | 118.98         | Mean:             | 70.18            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , , , ,                          | Minimum:                                 | 77.05                                    | Minimum:             | 109.76         | Minimum:          | 67.15            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Maximum:                                 | 251.00                                   | Maximum:             | 137.36         | Maximum:          | 72.78            |
| 13. Entre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | enchment Ratio (Wfpa/Wbkf)       | Mean:                                    | 6.74                                     | Mean:                | 3.83           | Mean:             | 3.83             |
| 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | Minimum:                                 | 3.14                                     | Minimum:             | 3.53           | Minimum:          | 3.53             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Maximum:                                 | 10.34                                    | Maximum:             | 4.42           | Maximum:          | 4.42             |
| 14 Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nder Length, ft (Lm)             | Mean:                                    | 118.20                                   | Mean:                | 157.66         | Mean:             | 94.00            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g; ()                            | Minimum:                                 | 85.80                                    | Minimum:             | 55.35          | Minimum:          | 33.00            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Maximum:                                 | 165.10                                   | Maximum:             | 259.97         | Maximum:          | 155.00           |
| 15 Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nder Length Ratio                | Mean:                                    | 4.85                                     | Mean:                | 5.07           | Mean:             | 5.07             |
| 1020-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /Wbkf)                           | Minimum:                                 | 3.52                                     | Minimum:             | 1.78           | Minimum:          | 1.78             |
| (Lin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (( Daily                         | Maximum:                                 | 6.77                                     | Maximum:             | 8.37           | Maximum:          | 8.37             |
| 16 Radi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | us of Curvature, ft (Rc)         | Mean:                                    | 45.80                                    | Mean:                | 82.18          | Mean:             | 49.00            |
| TO. Radi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | us of Curvature, it (ite)        | Minimum:                                 | 19.70                                    | Minimum:             | 31.87          | Minimum:          | 19.00            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Maximum:                                 | 124.40                                   | Maximum:             | 192.88         | Maximum:          | 115.00           |
| 17 Patie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o of Radius of Curvature to      | Mean:                                    | 1.88                                     | Mean:                | 2.65           | Mean:             | 2.65             |
| The second | th (Rc/Wbkf)                     | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 0.81                                     | Minimum:             | 1.03           | Minimum:          | 1.03             |
| widt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in (ite/ woki)                   | Minimum:<br>Maximum:                     | 5.10                                     | Maximum:             | 6.21           | Maximum:          | 6.21             |
| 10 D-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Width & White                    | Maximum:<br>Mean:                        | 32.80                                    | Maximum:<br>Mean:    | 112.37         | Maximum:<br>Mean: | 67.00            |
| 16. Delt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Width, ft (Wblt)                 | Minimum:                                 | Service The Service                      | 200                  | 60.38          | Minimum:          | 36.00            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | Maximum:                                 | 15.20<br>48.70                           | Minimum:<br>Maximum: | 251.58         | Maximum:          | 150.00           |
| 10 Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nder Width Ratio (Wblt/Wbkf)     | Maximum:<br>Mean:                        | 1.35                                     | Maximum:<br>Mean:    | 3.62           | Maximum:<br>Mean: | 3.62             |
| 19. Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nuer widur Nauo (wbit/ wbkr)     | Minimum:                                 | 0.62                                     | Mean:<br>Minimum:    | 1.94           | Minimum:          | 1.94             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | Minimum:<br>Maximum:                     |                                          | 1 m 1 m 1 m 1 m 1    | < 7.5 m        | Maximum:          | 8.10             |
| 20 T -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Peak Usisht & / DID              |                                          | 2.00                                     | Maximum:             | 8.10           |                   | 2.30             |
| 20. Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bank Height, ft (LBH)            | Mean:                                    | 7.53                                     | Mean:                | 2.83           | Mean:             |                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | Minimum:                                 | 5.94                                     | Minimum:             | 2.30           | Minimum:          | 2.09             |
| AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | Maximum:                                 | 8.93                                     | Maximum:             | 3.52           | Maximum:          | 2.67             |
| 21. Sinue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | osity (K)                        |                                          |                                          |                      | 4.00           | M                 |                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | Mean:                                    | 1.14                                     | Mean:                | 1.29           | Mean:             | 1.46             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01                               |                                          |                                          |                      |                |                   |                  |
| 22 Valle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ey Slope (VS)                    |                                          |                                          |                      |                |                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Mean:                                    | 0.00240                                  | Mean:                | 0.00240        | Mean:             | 0.01310          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                                          |                                          |                      |                |                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | age Water Surface Slope (S) =    |                                          |                                          |                      |                |                   |                  |
| (VS/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K)                               | Mean:                                    | 0.00211                                  | Mean:                | 0.00186        | Mean:             | 0.00897          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                                          |                                          |                      |                |                   |                  |
| 24. Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Slope (Sp)                       | Mean:                                    | 0.00067                                  | Mean:                | 0.00025        | Mean:             | 0.00120          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sen it liefs                     | Minimum:                                 | 0.00000                                  | Minimum:             | 0.00000        | Minimum:          | 0.00000          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Maximum:                                 | 0.00178                                  | Maximum:             | 0.00090        | Maximum:          | 0.00433          |
| 25. Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o of Pool Slope to Average Water | Mean:                                    | 0.32                                     | Mean:                | 0.13           | Mean:             | 0.13             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e (Sp/S)                         | Minimum:                                 | 0.00                                     | Minimum:             | 0.00           | Minimum:          | 0.00             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a 161 - A                        | Maximum:                                 | 0.85                                     | Maximum:             | 0.48           | Maximum:          | 0.48             |

 $\left( \right)$ 

(

|            | Variables                                |                   | D06027-B (Little W<br>Existing Channel |                      | Proposed Reach |                   | Reference Reach   |
|------------|------------------------------------------|-------------------|----------------------------------------|----------------------|----------------|-------------------|-------------------|
|            | , minores                                | NAME              | R2 Upper                               |                      | R2 Upper       |                   | UT to Ostin Creel |
| 26.        | Riffle Slope (water surface facet slope) |                   | 0.00349                                | Mean:                | 0.00588        | Mean:             | 0.02837           |
|            | (Srif)                                   | Minimum:          | 0.00093                                | Minimum:             | 0.00131        | Minimum:          | 0.00632           |
|            |                                          | Maximum:          | 0.00821                                | Maximum:             | 0.01358        | Maximum:          | 0.06551           |
| 27.        | Ratio of Riffle Slope to Average         | Mean:             | 1.66                                   | Mean:                | 3.16           | Mean:             | 3.16              |
|            | Water Slope (Srif/S)                     | Minimum:          | 0.44                                   | Minimum:             | 0.70           | Minimum:          | 0.70              |
|            |                                          | Maximum:          | 3.90                                   | Maximum:             | 7.30           | Maximum:          | 7.30              |
| 28.<br>29. | Run Slope (water surface facet slope)    | Mean:             | 0.00279                                | Mean:                | 0.00502        | Mean:             | 0.02423           |
|            | (Srun)                                   | Minimum:          | 0.00089                                | Minimum:             | 0.00187        | Minimum:          | 0.00903           |
|            | * 2                                      | Maximum:          | 0.00486                                | Maximum:             | 0.01638        | Maximum:          | 0.07902           |
|            | Ratio Run Slope/Average Water            | Mean:             | 1.33                                   | Mean:                | 2.70           | Mean:             | 2.70              |
|            | Surface Slope (Srun/S)                   | Minimum:          | 0.42                                   | Minimum:             | 1.01           | Minimum:          | 1.01              |
|            |                                          | Maximum:          | 2.31                                   | Maximum:             | 8.81           | Maximum:          | 8.81              |
|            | Slope of Glide (water surface facet      | Mean:             | 0.00351                                | Mean:                | 0.00067        | Mean:             | 0.00325           |
|            | slope) (Sg)                              | Minimum:          | 0.00118                                | Minimum:             | 0.00000        | Minimum:          | 0.00000           |
|            |                                          | Maximum:          | 0.00674                                | Maximum:             | 0.00270        | Maximum:          | 0.01304           |
|            | Ratio Glide Slope/Average Water          | Mean:             | 1.67                                   | Mean:                | 0.36           | Mean:             | 0.36              |
|            | Surface Slope (Sg/S)                     | Minimum:          | 0.56                                   | Minimum:             | 0.00           | Minimum:          | 0.00              |
|            |                                          | Maximum:          | 3.20                                   | Maximum:             | 1.45           | Maximum:          | 1.45              |
|            | Maximum Pool Depth, ft (dpool)           | Mean:             | 5.28                                   | Mean:                | 4.30           | Mean:             | 2.88              |
|            | 14.                                      | Minimum:          | 4.61                                   | Minimum:             | 3.24           | Minimum:          | 2.17              |
|            |                                          | Maximum:          | 6.29                                   | Maximum:             | 4.95           | Maximum:          | 3.32              |
|            | Ratio of Maximum Pool Depth to           | Mean:             | 1.68                                   | Mean:                | 1.76           | Mean:             | 1.76              |
|            | Mean Depth (dpool/dbkf)                  | Minimum:          | 1.47                                   | Minimum:             | 1.32           | Minimum:          | 1.32              |
| 34.        |                                          | Maximum:          | 2.01                                   | Maximum:             | 2.02           | Maximum:          | 2.02              |
|            | Max Run Depth, ft (drun)                 | Mean:             | 4.44                                   | Mean:                | 3.49           | Mean:             | 2.34              |
|            |                                          | Minimum:          | 3.91                                   | Minimum:             | 3.30           | Minimum:          | 2.21              |
| 35.        | D . 10 D D 1/D 10111                     | Maximum:          | 5.53                                   | Maximum:             | 4.06           | Maximum:          | 2.72              |
|            | Ratio Max Run Depth/Bankfull Mean        | Mean:<br>Minimum: | 1.42                                   | Mean:                | 1.43           | Mean:<br>Minimum: | 1.43<br>1.35      |
|            | Depth (drun/dbkf)                        |                   | 1.25                                   | Minimum:<br>Maximum: | 1.35<br>1.66   | Maximum:          | 1.55              |
| 36.        | Main Children de Gala                    | Maximum:<br>Mean: | 1.76                                   | Maximum:<br>Mean:    | 3.13           | Maximum:<br>Mean: | 2.10              |
|            | Maximum Glide Depth, ft (dg)             | Mean:<br>Minimum: | 3.91                                   | Mean:<br>Minimum:    | 2.52           | Minimum:          | 1.69              |
|            |                                          | Maximum:          | 5.53                                   | Maximum:             | 3.79           | Maximum:          | 2.54              |
| 27         | Ratio of Max Glide Depth/Bankfull        | Maximum:<br>Mean: | 1.42                                   | Mean:                | 1.28           | Mean:             | 1.28              |
| 37.        | Mean Depth (dg/dbkf)                     | Minimum:          | 1.42                                   | Minimum:             | 1.03           | Minimum:          | 1.03              |
|            | Mean Depun (dg/ doki)                    | Maximum:          | 1.76                                   | Maximum:             | 1.55           | Maximum:          | 1.55              |
| 20         | Pool Width, ft (Wbkfp)                   | Mean:             | 31.13                                  | Mean:                | 25.71          | Mean:             | 15.33             |
| 39.        | roor while, it (wokep)                   | Minimum:          | 30.96                                  | Minimum:             | 20.31          | Minimum:          | 12.11             |
|            |                                          | Maximum:          | 31.30                                  | Maximum:             | 31.70          | Maximum:          | 18.90             |
|            | Ratio of Pool Width to Bankfull          | Mean:             | 1.28                                   | Mean:                | 0.83           | Mean:             | 0.83              |
|            | Width (Wbkfp/Wbkf)                       | Minimum:          | 1.27                                   | Minimum:             | 0.65           | Minimum:          | 0.65              |
|            |                                          | Maximum:          | 1.28                                   | Maximum:             | 1.02           | Maximum:          | 1.02              |
|            | Pool Cross Sectional Area, sq ft         | Mean:             | 85.30                                  | Mean:                | 71.85          | Mean:             | 28.59             |
|            | (Apool)                                  | Minimum:          | 76.25                                  | Minimum:             | 53.47          | Minimum:          | 21.28             |
|            |                                          | Maximum:          | 94.35                                  | Maximum:             | 97.54          | Maximum:          | 38.82             |
|            | Ratio of Pool Area to Bankfull Riffle    | Mean:             | 1.12                                   | Mean:                | 0.95           | Mean:             | 0.95              |
|            | Area (Apool/Abkf)                        | Minimum:          | 1.00                                   | Minimum:             | 0.70           | Minimum:          | 0.70              |
|            | <b>XI 2</b>                              | Maximum:          | 1.23                                   | Maximum:             | 1.28           | Maximum:          | 1.28              |
| 42.        | Pool to Pool Spacing, ft (p-p)           | Mean:             | 205.68                                 | Mean:                | 132.27         | Mean:             | 78.86             |
|            |                                          | Minimum:          | 38.69                                  | Minimum:             | 84.36          | Minimum:          | 50.30             |
|            |                                          | Maximum:          | 442.44                                 | Maximum:             | 177.52         | Maximum:          | 105.84            |
|            | Ratio of p-p Spacing to Bankfull         | Mean:             | 8.43                                   | Mean:                | 4.26           | Mean:             | 4.26              |
|            | Width (p-p/Wbkf)                         | Minimum:          | 1.59                                   | Minimum:             | 2.72           | Minimum:          | 2.72              |
|            |                                          | Maximum:          | 18.14                                  | Maximum:             | 5.71           | Maximum:          | 5.71              |
|            | Pool Length, ft (Lp)                     | Mean:             | 42.00                                  | Mean:                | 58.89          | Mean:             | 35.11             |
|            |                                          | Minimum:          | 8.52                                   | Minimum:             | 30.76          | Minimum:          | 18.34             |
|            |                                          | Maximum:          | 137.06                                 | Maximum:             | 105.45         | Maximum:          | 62.87             |
| 45.        | Ratio of Pool Length to Bankfull         | Mean:             | 1.72                                   | Mean:                | 1.90           | Mean:             | 1.90              |
|            | (Lp/Wbkf)                                | Minimum:          | 0.35                                   | Minimum:             | 0.99           | Minimum:          | 0.99              |
|            |                                          | Maximum:          | 5.62                                   | Maximum:             | 3.39           | Maximum:          | 3.39              |

.

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | D06027-B (Little W<br>Existing Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | Proposed Reach                                                                                                  | T.                                      | Reference Reac            |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------|
|            | Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NAME                  | R2 Lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 | R2 Lower                                                                                                        |                                         | UT to Ostin Cree          |
| 1.         | Stream Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TUMITE                | Degraded E5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 | C5                                                                                                              |                                         | C1 to Ostili Cree<br>C4/1 |
| 2.         | Drainage Area, sq. mi (acres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | 10.85(6943.97)                                                                                                  |                                         |                           |
| -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 10.85(6943.97)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | 10.85(09+3.97)                                                                                                  |                                         | 0.867(554.9)              |
| 3.         | Bankfull Width, ft (Wbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean:                 | 30.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                                                                                                                 | Mean:                                   | 18.52                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minimum:              | 28.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mean:                           | 35.64                                                                                                           | Minimum:                                | 15.97                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:              | 32.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                                                                                                                 | Maximum:                                | 20.60                     |
| 4.         | Bankfull Mean Depth, ft (dbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean:                 | 3.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                 | Mean:                                   | 1.64                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minimum:              | 3.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                           | 2.81                                                                                                            | Minimum:                                | 1.58                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:              | 3.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                 | Maximum:                                | 1.72                      |
| 5.         | Width/Depth Ratio (Wbkf/dbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mean:                 | 8.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                 | Mean:                                   | 11.34                     |
| э.         | widul/Depui Rado (wbki/dbki)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25R (M2)0259458       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mean:                           | 10.70                                                                                                           | 0.0000000000000000000000000000000000000 |                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minimum:              | 8.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                           | 12.70                                                                                                           | Minimum:                                | 9.28                      |
| _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:              | 9.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                 | Maximum:                                | 12.72                     |
| 6.         | Bankfull Cross-Sectional Area, sq ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                 | 103.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                                                                                                 | Mean:                                   | 30.25                     |
|            | (Abkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minimum:              | 99.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mean:                           | 100.00                                                                                                          | Minimum:                                | 27.41                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:              | 106.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                                                                                                 | Maximum:                                | 33.37                     |
| 7.         | Bankfull Mean Velocity, fps (Vbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                                                                                 |                                         |                           |
| <i>i</i> . | Danarun Mean Velocity, ips (Voki)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mean:                 | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean:                           | 4.9                                                                                                             | Mean:                                   | 4.2                       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Micall.               | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean.                           | 4.7                                                                                                             | Mean.                                   | 7.4                       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                                                                                 |                                         |                           |
| 8.         | Bankfull Discharge, cfs (Qbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                                                                                 |                                         |                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mean:                 | 489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean:                           | 489                                                                                                             | Mean:                                   | 128                       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                                                                                 |                                         |                           |
| 9.         | Maximum Bankfull Depth, ft (dmbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mean:                 | 3.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                           | 3.25                                                                                                            | Mean:                                   | 1.90                      |
|            | content and a separate of the second s | Minimum:              | 3.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                        | 2.63                                                                                                            | Minimum:                                | 1.54                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121202020202020202020 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 06 250 57 562 0 70 60 0 70 CADA |                                                                                                                 | 3636C325032535353535946                 |                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:              | 4.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                        | 4.04                                                                                                            | Maximum:                                | 2.36                      |
| 0.         | Maximum Riffle Depth/Mean Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mean:                 | 1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                           | 1.16                                                                                                            | Mean:                                   | 1.16                      |
|            | Depth (dmbkf/dbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Minimum:              | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                        | 0.94                                                                                                            | Minimum:                                | 0.94                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:              | 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                        | 1.44                                                                                                            | Maximum:                                | 1.44                      |
| 1.         | Ratio of Low Bank Height to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mean:                 | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                           | 1.00                                                                                                            | Mean:                                   | 1.23                      |
| •          | Maximum Bankfull Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minimum:              | 1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                        | 1.00                                                                                                            | Minimum:                                | 1.01                      |
|            | (LBH/dmbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Maximum:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:                        |                                                                                                                 |                                         |                           |
| _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 1.00                                                                                                            | Maximum:                                | 1.42                      |
| 2.         | Width of Flood Prone Area, ft (Wfpa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                 | 124.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mean:                           | 136.47                                                                                                          | Mean:                                   | 70.18                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minimum:              | 89.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimum:                        | 125.91                                                                                                          | Minimum:                                | 67.15                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:              | 159.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum:                        | 157.57                                                                                                          | Maximum:                                | 72.78                     |
| 3.         | Entrenchment Ratio (Wfpa/Wbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mean:                 | 4.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                           | 3.83                                                                                                            | Mean:                                   | 3.83                      |
|            | ( <b>1</b> -,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minimum:              | 3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                        | 3.53                                                                                                            | Minimum:                                | 3.53                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:              | 4.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                        | 4.42                                                                                                            | Maximum:                                |                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | and the second se |                                 | the second se |                                         | 4.42                      |
| 4.         | Meander Length, ft (Lm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mean:                 | 216.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mean:                           | 180.85                                                                                                          | Mean:                                   | 94.00                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minimum:              | 196.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minimum:                        | 63.49                                                                                                           | Minimum:                                | 33.00                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:              | 236.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum:                        | 298.20                                                                                                          | Maximum:                                | 155.00                    |
| 5.         | Meander Length Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                 | 7.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                           | 5.07                                                                                                            | Mean:                                   | 5.07                      |
|            | (Lm/Wbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum:              | 6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                        | 1.78                                                                                                            | Minimum:                                | 1.78                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:              | 7.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                        | 8.37                                                                                                            | Maximum:                                | 8.37                      |
| 1          | Radius of Curvature, ft (Rc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean:                 | 57.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mean:                           | 94.27                                                                                                           | Mean:                                   | 49.00                     |
| 0.         | Radius of Curvature, it (RC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                                                                                 |                                         |                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minimum:              | 30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimum:                        | 36.55                                                                                                           | Minimum:                                | 19.00                     |
| _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:              | 79.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maximum:                        | 221.25                                                                                                          | Maximum:                                | 115.00                    |
| 7.         | Ratio of Radius of Curvature to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mean:                 | 1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                           | 2.65                                                                                                            | Mean:                                   | 2.65                      |
|            | Width (Rc/Wbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minimum:              | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                        | 1.03                                                                                                            | Minimum:                                | 1.03                      |
|            | B D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maximum:              | 2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                        | 6.21                                                                                                            | Maximum:                                | 6.21                      |
| 8          | Belt Width, ft (Wblt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mean:                 | 42.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mean:                           | 128.90                                                                                                          | Mean:                                   | 67.00                     |
| υ.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.59/12 (COACE)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1010000000000                   | 10.01                                                                                                           |                                         |                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minimum:              | 16.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimum:                        | 69.26                                                                                                           | Minimum:                                | 36.00                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:              | 69.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maximum:                        | 288.59                                                                                                          | Maximum:                                | 150.00                    |
| 9.         | Meander Width Ratio (Wblt/Wbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mean:                 | 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                           | 3.62                                                                                                            | Mean:                                   | 3.62                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minimum:              | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                        | 1.94                                                                                                            | Minimum:                                | 1.94                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:              | 2.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                        | 8.10                                                                                                            | Maximum:                                | 8.10                      |
| 0.         | Low Bank Height, ft (LBH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean:                 | 6.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                           | 3.25                                                                                                            | Mean:                                   | 2.30                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minimum:              | 6.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                        | 2.63                                                                                                            | Minimum:                                | 2.09                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 172 ms 51             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                               |                                                                                                                 | 1                                       |                           |
| 1          | Simulation (IZ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:              | 8.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                        | 4.04                                                                                                            | Maximum:                                | 2.67                      |
| 1.         | Sinuosity (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | ian anan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 | 10,000                                                                                                          |                                         | 21 (5568                  |
|            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mean:                 | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                           | 1.10                                                                                                            | Mean:                                   | 1.46                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                                                                                 |                                         |                           |
| 2          | Valley Slope (VS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                                                                                 |                                         |                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mean:                 | 0.00210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mean:                           | 0.00210                                                                                                         | Mean:                                   | 0.01310                   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | A.23200.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 | 1910-0470-0470<br>1                                                                                             |                                         |                           |
| 2          | Average Water Surface Slope (S) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                                                                                 |                                         |                           |
| э.         | 0 1 ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | 0.00101                                                                                                         |                                         |                           |
|            | (VS/K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mean:                 | 0.00189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mean:                           | 0.00191                                                                                                         | Mean:                                   | 0.00897                   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                                                                                 |                                         |                           |
| 4.         | Pool Slope (Sp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mean:                 | 0.00203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mean:                           | 0.00026                                                                                                         | Mean:                                   | 0.00120                   |
| ients'     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minimum:              | 0.00016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Minimum:                        | 0.00000                                                                                                         | Minimum:                                | 0.00000                   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:              | 0.00491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maximum:                        |                                                                                                                 | Maximum:                                |                           |
| -          | Datia - ( Data 1 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | 0.00092                                                                                                         |                                         | 0.00433                   |
| 5.         | ACTIVATION (1997) CONTRACTOR AND CONTRACTOR AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean:                 | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                           | 0.13                                                                                                            | Mean:                                   | 0.13                      |
|            | Slope (Sp/S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minimum:              | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                        | 0.00                                                                                                            | Minimum:                                | 0.00                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:              | 2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                        | 0.48                                                                                                            | Maximum:                                | 0.48                      |

|     | Variables                                              |                      | Existing Channel |                      | Proposed Reach |                      | Reference Read  |
|-----|--------------------------------------------------------|----------------------|------------------|----------------------|----------------|----------------------|-----------------|
|     | T allables                                             | NAME                 | R2 Lower         |                      | R2 Lower       |                      | UT to Ostin Cre |
| 26. | Riffle Slope (water surface facet slope)               | Mean:                | 0.00663          | Mean:                | 0.00604        | Mean:                | 0.02837         |
| -01 | (Srif)                                                 | Minimum:             | 0.00080          | Minimum:             | 0.00134        | Minimum:             | 0.00632         |
|     |                                                        | Maximum:             | 0.02367          | Maximum:             | 0.01394        | Maximum:             | 0.06551         |
| 27. | Ratio of Riffle Slope to Average                       | Mean:                | 3.50             | Mean:                | 3.16           | Mean:                | 3.16            |
|     | Water Slope (Srif/S)                                   | Minimum:             | 0.42             | Minimum:             | 0.70           | Minimum:             | 0.70            |
|     |                                                        | Maximum:             | 12.51            | Maximum:             | 7.30           | Maximum:             | 7.30            |
| 28. | Run Slope (water surface facet slope)                  | Mean:                | 0.00755          | Mean:                | 0.00516        | Mean:                | 0.02423         |
|     | (Srun)                                                 | Minimum:             | 0.00074          | Minimum:             | 0.00192        | Minimum:             | 0.00903         |
|     | 1971 - 1945<br>                                        | Maximum:             | 0.01919          | Maximum:             | 0.01681        | Maximum:             | 0.07902         |
| 29. |                                                        | Mean:                | 3.99             | Mean:                | 2.70           | Mean:                | 2.70            |
|     | Surface Slope (Srun/S)                                 | Minimum:             | 0.39             | Minimum:             | 1.01           | Minimum:             | 1.01            |
|     |                                                        | Maximum:             | 10.14            | Maximum:             | 8.81           | Maximum:             | 8.81            |
| 30. | Slope of Glide (water surface facet                    | Mean:                | 0.00344          | Mean:                | 0.00069        | Mean:                | 0.00325         |
|     | slope) (Sg)                                            | Minimum:             | 0.00120          | Minimum:             | 0.00000        | Minimum:             | 0.00000         |
|     |                                                        | Maximum:             | 0.01026          | Maximum:             | 0.00277        | Maximum:             | 0.01304         |
| 31. |                                                        | Mean:                | 1.82             | Mean:                | 0.36           | Mean:                | 0.36            |
|     | Surface Slope (Sg/S)                                   | Minimum:             | 0.63             | Minimum:             | 0.00           | Minimum:             | 0.00            |
|     |                                                        | Maximum:             | 5.42             | Maximum:             | 1.45           | Maximum:             | 1.45            |
| 32. | Maximum Pool Depth, ft (dpool)                         | Mean:                | 4.97             | Mean:                | 4.93           | Mean:                | 2.88            |
|     |                                                        | Minimum:             | 3.72             | Minimum:             | 3.71           | Minimum:             | 2.17            |
|     |                                                        | Maximum:             | 5.96             | Maximum:             | 5.68           | Maximum:             | 3.32            |
| 33. | Ratio of Maximum Pool Depth to                         | Mean:                | 1.46             | Mean:                | 1.76           | Mean:                | 1.76            |
|     | Mean Depth (dpool/dbkf)                                | Minimum:             | 1.09             | Minimum:             | 1.32           | Minimum:             | 1.32            |
|     | N. D. D. I. G.(I. )                                    | Maximum:             | 1.75             | Maximum:             | 2.02           | Maximum:             | 2.02            |
| 34. | Max Run Depth, ft (drun)                               | Mean:                | 4.14             | Mean:                | 4.00           | Mean:                | 2.34<br>2.21    |
|     |                                                        | Minimum:<br>Maximum: | 3.36             | Minimum:<br>Maximum: | 3.78<br>4.65   | Minimum:<br>Maximum: | 2.21            |
| 25  | Baria Mar Bar David /Barlefill Mar                     |                      | 4.62             | Maximum:<br>Mean:    | 1.43           | Maximum:<br>Mean:    | 1.43            |
| 35. | Ratio Max Run Depth/Bankfull Mean<br>Depth (drun/dbkf) | Mean:<br>Minimum:    | 0.99             | Minimum:             | 1.45           | Minimum:             | 1.45            |
|     | Depui (drui/dbki)                                      | Maximum:             | 1.36             | Maximum:             | 1.66           | Maximum:             | 1.66            |
| 26  | Maximum Glide Depth, ft (dg)                           | Maximum.<br>Mean:    | 4.35             | Maximum.<br>Mean:    | 3.59           | Mean:                | 2.10            |
| 36. | Maximum Ghue Depui, it (ug)                            | Minimum:             | 3.81             | Minimum:             | 2.89           | Minimum:             | 1.69            |
|     |                                                        | Maximum:             | 4.93             | Maximum:             | 4.35           | Maximum:             | 2.54            |
| 37. | Ratio of Max Glide Depth/Bankfull                      | Mean:                | 1.28             | Mean:                | 1.28           | Mean:                | 1.28            |
| 57. | Mean Depth (dg/dbkf)                                   | Minimum:             | 1.12             | Minimum:             | 1.03           | Minimum:             | 1.03            |
|     |                                                        | Maximum:             | 1.45             | Maximum:             | 1.55           | Maximum:             | 1.55            |
| 38. | Pool Width, ft (Wbkfp)                                 | Mean:                | 44.20            | Mean:                | 29.49          | Mean:                | 15.33           |
|     | , ( I)                                                 | Minimum:             | 34.70            | Minimum:             | 23.30          | Minimum:             | 12.11           |
|     |                                                        | Maximum:             | 53.70            | Maximum:             | 36.36          | Maximum:             | 18.90           |
| 39. | Ratio of Pool Width to Bankfull                        | Mean:                | 1.46             | Mean:                | 0.83           | Mean:                | 0.83            |
|     | Width (Wbkfp/Wbkf)                                     | Minimum:             | 1.14             | Minimum:             | 0.65           | Minimum:             | 0.65            |
|     | 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0               | Maximum:             | 1.77             | Maximum:             | 1.02           | Maximum:             | 1.02            |
| 40. | Pool Cross Sectional Area, sq ft                       | Mean:                | 152.20           | Mean:                | 94.53          | Mean:                | 28.59           |
|     | (Apool)                                                | Minimum:             | 127.99           | Minimum:             | 70.35          | Minimum:             | 21.28           |
|     |                                                        | Maximum:             | 176.40           | Maximum:             | 128.34         | Maximum:             | 38.82           |
| 41. |                                                        | Mean:                | 1.48             | Mean:                | 0.95           | Mean:                | 0.95            |
|     | Area (Apool/Abkf)                                      | Minimum:             | 1.24             | Minimum:             | 0.70           | Minimum:             | 0.70            |
|     |                                                        | Maximum:             | 1.71             | Maximum:             | 1.28           | Maximum:             | 1.28            |
| 42. | Pool to Pool Spacing, ft (p-p)                         | Mean:                | 149.76           | Mean:                | 151.72         | Mean:                | 78.86           |
|     |                                                        | Minimum:             | 64.67            | Minimum:             | 96.77          | Minimum:             | 50.30           |
| _   |                                                        | Maximum:             | 292.54           | Maximum:             | 203.63         | Maximum:             | 105.84          |
| 43. | Ratio of p-p Spacing to Bankfull                       | Mean:                | 4.93             | Mean:                | 4.26           | Mean:                | 4.26            |
|     | Width (p-p/Wbkf)                                       | Minimum:             | 2.13             | Minimum:             | 2.72           | Minimum:             | 2.72            |
|     |                                                        | Maximum:             | 9.64             | Maximum:             | 5.71           | Maximum:             | 5.71            |
| 44. | Pool Length, ft (Lp)                                   | Mean:                | 48.59            | Mean:                | 67.55          | Mean:                | 35.11           |
|     |                                                        | Minimum:             | 20.53            | Minimum:             | 35.28          | Minimum:             | 18.34           |
| -   |                                                        | Maximum:             | 84.01            | Maximum:             | 120.96         | Maximum:             | 62.87           |
| 45. | Ratio of Pool Length to Bankfull<br>(Lp/Wbkf)          | Mean:<br>Minimum:    | 1.60<br>0.68     | Mean:<br>Minimum:    | 1.90<br>0.99   | Mean:<br>Minimum:    | 1.90<br>0.99    |
|     |                                                        |                      |                  |                      | 1 1 4 4        |                      |                 |

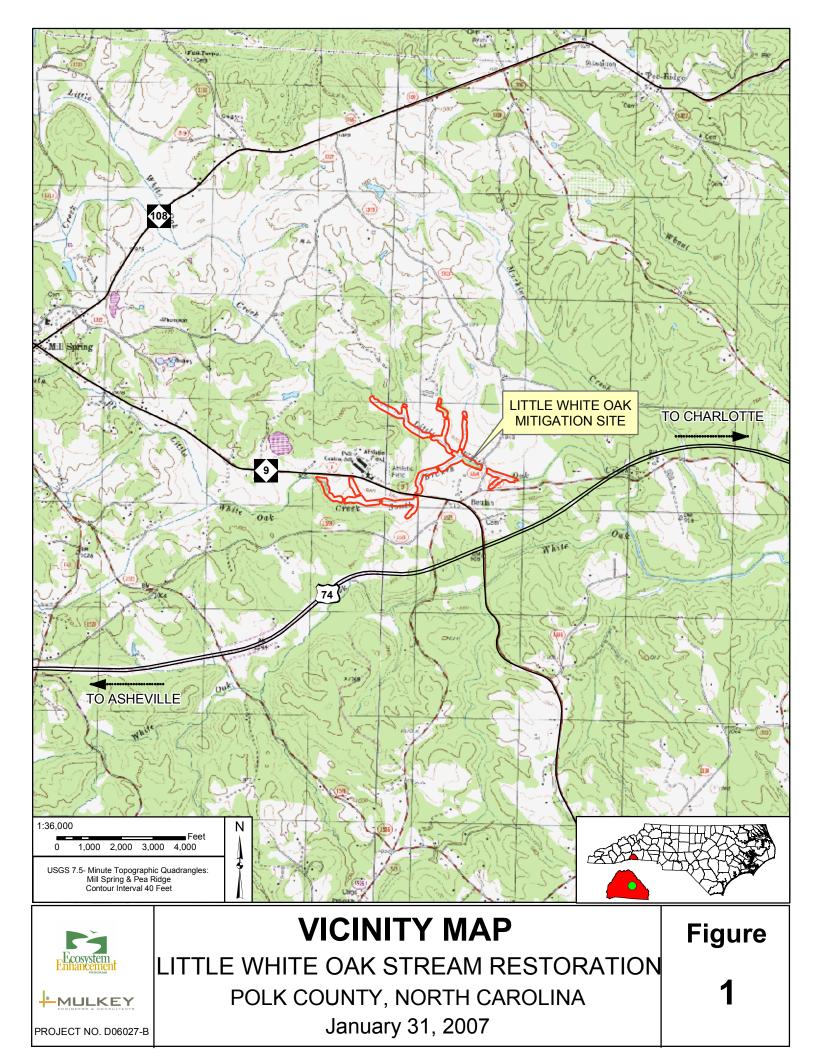
| P10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | Existing Channel |          | am Restoration Proje<br>Proposed Reach |          | Reference Reach   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|----------|----------------------------------------|----------|-------------------|
| Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NAME                      | R2A              |          | R2A                                    |          | UT to Ostin Creek |
| 1. Stream Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TAME                      | Degraded E4      |          | C4                                     |          | C4/1              |
| 2. Drainage Area, sq. mi (acres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | 0.54(354.6)      |          | 0.54(354.6)                            |          | 0.867(554.9)      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                     | 11.19            |          | 0.54(554.0)                            | Mean:    | 18.52             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                  | 11.19            | Mean:    | 11.73                                  | Minimum: | 15.97             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                  | 11.20            |          | 11.75                                  | Maximum: | 20.60             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                     | 1.24             |          |                                        | Mean:    | 1.64              |
| AND DESCRIPTION OF THE ADDRESS OF TH | Minimum:                  | 0.97             | Mean:    | 0.94                                   | Minimum: | 1.58              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                  | 1.50             | incan.   | 0.71                                   | Maximum: | 1.72              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                     | 9.50             |          |                                        | Mean:    | 11.34             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                  | 7.47             | Mean:    | 12.50                                  | Minimum: | 9.28              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                  | 11.53            | Mean.    | 12.50                                  | Maximum: | 12.72             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:<br>Mean:         | 13.80            |          |                                        | Mean:    | 30.25             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                  | 10.82            | Mean:    | 11.00                                  | Minimum: | 27.41             |
| . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum:                  | 16.78            | incan.   | 11.00                                  | Maximum: | 33.37             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                  | 10.78            |          |                                        | Maximun. | 33.37             |
| 7. Bankfull Mean Velocity, fps (Vbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mean:                     | 3.2              | Mean:    | 4.0                                    | Mean:    | 4.2               |
| 8. Bankfull Discharge, cfs (Qbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mean:                     | 44               | Mean:    | 44                                     | Mean:    | 128               |
| 9. Maximum Bankfull Depth, ft (dmbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mean:                     | 1.48             | Mean:    | 1.09                                   | Mean:    | 1.90              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                  | 0.95             | Minimum: | 0.88                                   | Minimum: | 1.54              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                  | 2.23             | Maximum: | 1.35                                   | Maximum: | 2.36              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                     | 1.20             | Mean:    | 1.16                                   | Mean:    | 1.16              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                  | 0.77             | Minimum: | 0.94                                   | Minimum: | 0.94              |
| 1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum:                  | 1.81             | Maximum: | 1.44                                   | Maximum: | 1.44              |
| 11. Ratio of Low Bank Height to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                     | 4.27             | Mean:    | 1.00                                   | Mean:    | 1.23              |
| Maximum Bankfull Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Minimum:                  | 2.28             | Minimum: | 1.00                                   | Minimum: | 1.01              |
| (LBH/dmbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maximum:                  | 6.82             | Maximum: | 1.00                                   | Maximum: | 1.42              |
| 2. Width of Flood Prone Area, ft (Wfpa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean:                     | 17.52            | Mean:    | 44.91                                  | Mean:    | 70.18             |
| - , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minimum:                  | 15.99            | Minimum: | 41.43                                  | Minimum: | 67.15             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                  | 19.05            | Maximum: | 51.85                                  | Maximum: | 72.78             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                     | 1.57             | Mean:    | 3.83                                   | Mean:    | 3.83              |
| ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Minimum:                  | 1.43             | Minimum: | 3.53                                   | Minimum: | 3.53              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                  | 1.70             | Maximum: | 4.42                                   | Maximum: | 4.42              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                     | 76.70            | Mean:    | 59.51                                  | Mean:    | 94.00             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                  | 76.70            | Minimum: | 20.89                                  | Minimum: | 33.00             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                  | 76.70            | Maximum: | 98.12                                  | Maximum: | 155.00            |
| 5. Meander Length Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean:                     | 6.85             | Mean:    | 5.07                                   | Mean:    | 5.07              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                  | 6.85             | Minimum: | 1.78                                   | Minimum: | 1.78              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                  | 6.85             | Maximum: | 8.37                                   | Maximum: | 8.37              |
| 6. Radius of Curvature, ft (Rc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                     | 21.10            | Mean:    | 31.02                                  | Mean:    | 49.00             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                  | 8.80             | Minimum: | 12.03                                  | Minimum: | 19.00             |
| »                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum:                  | 31.40            | Maximum: | 72.80                                  | Maximum: | 115.00            |
| 7. Ratio of Radius of Curvature to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mean:                     | 1.89             | Mean:    | 2.65                                   | Mean:    | 2.65              |
| Width (Rc/Wbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                  | 0.79             | Minimum: | 1.03                                   | Minimum: | 1.03              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                  | 2.81             | Maximum: | 6.21                                   | Maximum: | 6.21              |
| 8. Belt Width, ft (Wblt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mean:                     | 20.20            | Mean:    | 42.41                                  | Mean:    | 67.00             |
| And a second sec | Minimum:                  | 20.20            | Minimum: | 22.79                                  | Minimum: | 36.00             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                  | 20.20            | Maximum: | 94.96                                  | Maximum: | 150.00            |
| 19. Meander Width Ratio (Wblt/Wbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mean:                     | 1.81             | Mean:    | 3.62                                   | Mean:    | 3.62              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                  | 1.81             | Minimum: | 1.94                                   | Minimum: | 1.94              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                  | 1.81             | Maximum: | 8.10                                   | Maximum: | 8.10              |
| 20. Low Bank Height, ft (LBH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mean:                     | 5.64             | Mean:    | 1.09                                   | Mean:    | 2.30              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                  | 4.21             | Minimum: | 0.88                                   | Minimum: | 2.09              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                  | 6.68             | Maximum: | 1.35                                   | Maximum: | 2.67              |
| 21. Sinuosity (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mean:                     | 1.12             | Mean:    | 1.32                                   | Mean:    | 1.46              |
| 22 Valley Slope (VS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                  |          |                                        |          | 0.01210           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                     | 0.01200          | Mean:    | 0.01200                                | Mean:    | 0.01310           |
| 23. Average Water Surface Slope (S) =<br>(VS/K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean:                     | 0.01071          | Mean:    | 0.00909                                | Mean:    | 0.00897           |
| 24. Pool Slope (Sp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mean:                     | 0.00260          | Mean:    | 0.00122                                | Mean:    | 0.00120           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                  | 0.00000          | Minimum: | 0.00000                                | Minimum: | 0.00000           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                  | 0.00891          | Maximum: | 0.00439                                | Maximum: | 0.00433           |
| 25. Ratio of Pool Slope to Average Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mean:                     | 0.24             | Mean:    | 0.13                                   | Mean:    | 0.13              |
| 25. Ando of i oor biope to riverage water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • 1. 1. Sector Control II | 0.00             | Minimum: | 0.00                                   | Minimum: | 0.00              |
| Slope (Sp/S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Minimum:                  |                  |          |                                        |          |                   |

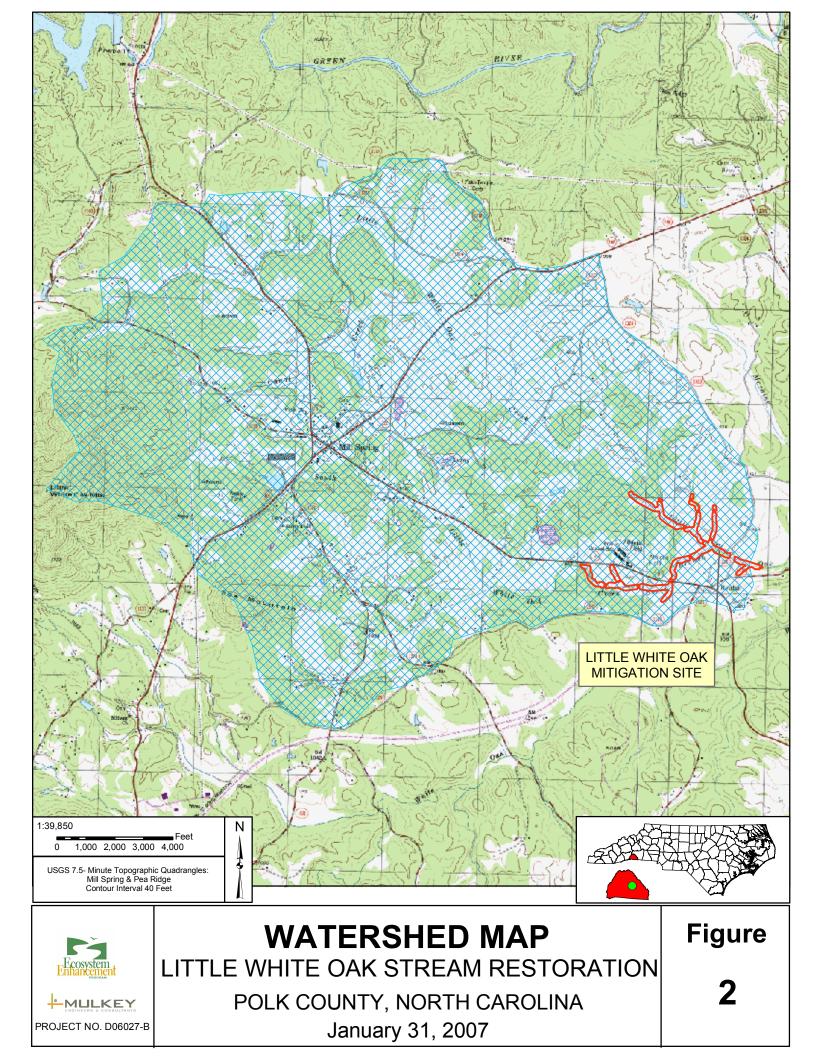
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project I.D. N          | o. D06027-B (Little W | hite Oak Stre | am Restoration Proje | ct)      |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|---------------|----------------------|----------|-----------------|
| Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | Existing Channel      |               | Proposed Reach       |          | Reference Read  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NAME                    | R2A                   |               | R2A                  |          | UT to Ostin Cre |
| 26. Riffle Slope (water sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | face facet slope) Mean: | 0.01067               | Mean:         | 0.02874              | Mean:    | 0.02837         |
| (Srif)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Minimum:                | 0.00423               | Minimum:      | 0.00640              | Minimum: | 0.00632         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 0.02424               | Maximum:      | 0.06637              | Maximum: | 0.06551         |
| 27. Ratio of Riffle Slope to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Average Mean:           | 1.00                  | Mean:         | 3.16                 | Mean:    | 3.16            |
| Water Slope (Srif/S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum:                | 0.39                  | Minimum:      | 0.70                 | Minimum: | 0.70            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 2.26                  | Maximum:      | 7.30                 | Maximum: | 7.30            |
| 28. Run Slope (water surfa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ce facet slope) Mean:   | 0.00812               | Mean:         | 0.02455              | Mean:    | 0.02423         |
| (Srun)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Minimum:                | 0.00315               | Minimum:      | 0.00915              | Minimum: | 0.00903         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 0.01367               | Maximum:      | 0.08006              | Maximum: | 0.07902         |
| 29. Ratio Run Slope/Aver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | 0.76                  | Mean:         | 2.70                 | Mean:    | 2.70            |
| Surface Slope (Srun/S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and part of the         | 0.29                  | Minimum:      | 1.01                 | Minimum: | 1.01            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 1.28                  | Maximum:      | 8.81                 | Maximum: | 8.81            |
| 30. Slope of Glide (water s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 0.00817               | Mean:         | 0.00329              | Mean:    | 0.00325         |
| slope) (Sg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Minimum:                | 0.00433               | Minimum:      | 0.00000              | Minimum: | 0.00000         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 0.01018               | Maximum:      | 0.01321              | Maximum: | 0.01304         |
| 31. Ratio Glide Slope/Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | 0.76                  | Mean:         | 0.36                 | Mean:    | 0.36            |
| Surface Slope (Sg/S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum:                | 0.40                  | Minimum:      | 0.00                 | Minimum: | 0.00            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 0.95                  | Maximum:      | 1.45                 | Maximum: | 1.45            |
| 32. Maximum Pool Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , ft (dpool) Mean:      | 2.21                  | Mean:         | 1.65                 | Mean:    | 2.88            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                | 1.20                  | Minimum:      | 1.24                 | Minimum: | 2.17            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 3.64                  | Maximum:      | 1.90                 | Maximum: | 3.32            |
| 33. Ratio of Maximum Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ol Depth to Mean:       | 1.79                  | Mean:         | 1.76                 | Mean:    | 1.76            |
| Mean Depth (dpool/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bkf) Minimum:           | 0.97                  | Minimum:      | 1.32                 | Minimum: | 1.32            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 2.95                  | Maximum:      | 2.02                 | Maximum: | 2.02            |
| 34. Max Run Depth, ft (dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | un) Mean:               | 1.78                  | Mean:         | 1.34                 | Mean:    | 2.34            |
| 104 109 - Colore - Colorence - Santa - Colorence - Col | Minimum:                | 1.04                  | Minimum:      | 1.26                 | Minimum: | 2.21            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 2.65                  | Maximum:      | 1.56                 | Maximum: | 2.72            |
| 35. Ratio Max Run Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bankfull Mean Mean:     | 1.44                  | Mean:         | 1.43                 | Mean:    | 1.43            |
| Depth (drun/dbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minimum:                | 0.84                  | Minimum:      | 1.35                 | Minimum: | 1.35            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 2.15                  | Maximum:      | 1.66                 | Maximum: | 1.66            |
| 36. Maximum Glide Dept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n, ft (dg) Mean:        | 1.78                  | Mean:         | 1.20                 | Mean:    | 2.10            |
| 1971 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 1972 - 19 | Minimum:                | 0.64                  | Minimum:      | 0.97                 | Minimum: | 1.69            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 2.43                  | Maximum:      | 1.45                 | Maximum: | 2.54            |
| 37. Ratio of Max Glide De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pth/Bankfull Mean:      | 1.44                  | Mean:         | 1.28                 | Mean:    | 1.28            |
| Mean Depth (dg/dbkf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) Minimum:              | 0.52                  | Minimum:      | 1.03                 | Minimum: | 1.03            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 1.97                  | Maximum:      | 1.55                 | Maximum: | 1.55            |
| 38. Pool Width, ft (Wbkfp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) Mean:                 | 11.15                 | Mean:         | 9.70                 | Mean:    | 15.33           |
| , , - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minimum:                | 7.68                  | Minimum:      | 7.67                 | Minimum: | 12.11           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 14.61                 | Maximum:      | 11.96                | Maximum: | 18.90           |
| 39. Ratio of Pool Width to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bankfull Mean:          | 1.00                  | Mean:         | 0.83                 | Mean:    | 0.83            |
| Width (Wbkfp/Wbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Minimum:                | 0.69                  | Minimum:      | 0.65                 | Minimum: | 0.65            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 1.31                  | Maximum:      | 1.02                 | Maximum: | 1.02            |
| 40. Pool Cross Sectional A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rea, sq ft Mean:        | 16.99                 | Mean:         | 10.40                | Mean:    | 28.59           |
| (Apool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minimum:                | 10.43                 | Minimum:      | 7.74                 | Minimum: | 21.28           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 23.55                 | Maximum:      | 14.12                | Maximum: | 38.82           |
| 41. Ratio of Pool Area to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bankfull Riffle Mean:   | 1.23                  | Mean:         | 0.95                 | Mean:    | 0.95            |
| Area (Apool/Abkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minimum:                | 0.76                  | Minimum:      | 0.70                 | Minimum: | 0.70            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 1.71                  | Maximum:      | 1.28                 | Maximum: | 1.28            |
| 42. Pool to Pool Spacing,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ft (p-p) Mean:          | 113.24                | Mean:         | 49.92                | Mean:    | 78.86           |
| <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Minimum:                | 83.13                 | Minimum:      | 31.84                | Minimum: | 50.30           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 165.66                | Maximum:      | 67.00                | Maximum: | 105.84          |
| 43. Ratio of p-p Spacing to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 10.12                 | Mean:         | 4.26                 | Mean:    | 4.26            |
| Width (p-p/Wbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimum:                | 7.43                  | Minimum:      | 2.72                 | Minimum: | 2.72            |
| <b>4</b> . <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum:                | 14.80                 | Maximum:      | 5.71                 | Maximum: | 5.71            |
| 44. Pool Length, ft (Lp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mean:                   | 31.82                 | Mean:         | 22.23                | Mean:    | 35.11           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:                | 17.15                 | Minimum:      | 11.61                | Minimum: | 18.34           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum:                | 65.41                 | Maximum:      | 39.80                | Maximum: | 62.87           |
| 45. Ratio of Pool Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | 2.84                  | Mean:         | 1.90                 | Mean:    | 1.90            |
| (Lp/Wbkf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minimum:                | 1.53                  | Minimum:      | 0.99                 | Minimum: | 0.99            |
| (P) ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum:                | 5.85                  |               | 3.39                 | Maximum: | 0.22            |

|            |                                                                           |                   | D06027-B (Little W<br>Existing Channel |                   | Proposed Reach | T                 | Reference Rea   |
|------------|---------------------------------------------------------------------------|-------------------|----------------------------------------|-------------------|----------------|-------------------|-----------------|
| -          | Variables                                                                 | NAME              | R2B                                    |                   | R2B            |                   | UT to Ostin Cre |
| 1.         | Stream Type                                                               |                   | G5c                                    |                   | C4             |                   | C4/1            |
|            | Drainage Area, sq. mi (acres)                                             |                   | 0.12(76.80)                            |                   | 0.12(76.80)    |                   | 0.867(554.9)    |
|            | Bankfull Width, ft (Wbkf)                                                 | Mean:             | 5.48                                   |                   |                | Mean:             | 18.52           |
| 5.         | 2                                                                         | Minimum:          | 4.51                                   | Mean:             | 7.97           | Minimum:          | 15.97           |
|            |                                                                           | Maximum:          | 6.44                                   |                   | 121020 12      | Maximum:          | 20.60           |
| 4.         | Bankfull Mean Depth, ft (dbkf)                                            | Mean:             | 1.33                                   |                   |                | Mean:             | 1.64            |
|            |                                                                           | Minimum:          | 1.31                                   | Mean:             | 0.63           | Minimum:          | 1.58            |
|            |                                                                           | Maximum:          | 1.35                                   |                   |                | Maximum:          | 1.72            |
| 5.         | Width/Depth Ratio (Wbkf/dbkf)                                             | Mean:             | 4.11                                   |                   |                | Mean:             | 11.34           |
| 5.         | midul, Departado (mont, conty                                             | Minimum:          | 3.44                                   | Mean:             | 12.70          | Minimum:          | 9.28            |
|            |                                                                           | Maximum:          | 4.77                                   | 10-040002003      |                | Maximum:          | 12.72           |
| 6.         | Bankfull Cross-Sectional Area, sq ft                                      | Mean:             | 7.33                                   |                   |                | Mean:             | 30.25           |
|            | (Abkf)                                                                    | Minimum:          | 5.92                                   | Mean:             | 5.00           | Minimum:          | 27.41           |
|            | ()                                                                        | Maximum:          | 8.73                                   |                   | 100001213181   | Maximum:          | 33.37           |
| 7          | Bankfull Mean Velocity, fps (Vbkf)                                        | inasintani.       | 0.75                                   |                   |                |                   |                 |
| <i>į</i> . | Dankrun Mean Velocity, 193 (Vokiy                                         | Mean:             | 4.6                                    | Mean:             | 6.8            | Mean:             | 4.2             |
| 8.         | Bankfull Discharge, cfs (Qbkf)                                            |                   |                                        |                   |                |                   |                 |
|            |                                                                           | Mean:             | 34                                     | Mean:             | 34             | Mean:             | 128             |
| 9.         | Maximum Bankfull Depth, ft (dmbkf)                                        | Mean:             | 1.75                                   | Mean:             | 0.73           | Mean:             | 1.90            |
| 9.         | masiniun Daikiun Depui, it (unoki)                                        | Minimum:          | 1.70                                   | Minimum:          | 0.59           | Minimum:          | 1.54            |
|            |                                                                           | Maximum:          | 1.80                                   | Maximum:          | 0.90           | Maximum:          | 2.36            |
| 10         | Maximum Riffle Depth/Mean Riffle                                          | Mean:             | 1.32                                   | Maximum.<br>Mean: | 1.16           | Mean:             | 1.16            |
|            | Depth (dmbkf/dbkf)                                                        | Minimum:          | 1.32                                   | Minimum:          | 0.94           | Minimum:          | 0.94            |
|            | Depur (unioki) doki)                                                      | Maximum:          | 1.35                                   | Maximum:          | 1.44           | Maximum:          | 1.44            |
| 11         | Ratio of Low Bank Height to                                               | Mean:             | 2.63                                   | Mean:             | 1.00           | Mean:             | 1.23            |
|            | Maximum Bankfull Depth                                                    | Minimum:          | 1.44                                   | Minimum:          | 1.00           | Minimum:          | 1.01            |
|            | (LBH/dmbkf)                                                               | Maximum:          | 3.81                                   | Maximum:          | 1.00           | Maximum:          | 1.42            |
|            |                                                                           | Mean:             | 100.35                                 | Maxinum.<br>Mean: | 30.52          | Mean:             | 70.18           |
| 12.        | width of Flood Prone Area, it (wipa)                                      | Minimum:          | 5.42                                   | Minimum:          | 28.15          | Minimum:          | 67.15           |
|            |                                                                           | Maximum:          | 195.28                                 | Maximum:          | 35.23          | Maximum:          | 72.78           |
|            | $\Gamma$ $\downarrow$ $\downarrow$ $D$ $\downarrow$ $\Delta Y/C$ $/W/1.0$ |                   | 15.76                                  | Maximum:<br>Mean: | 3.83           | Maximum.<br>Mean: | 3.83            |
| 13.        | Entrenchment Ratio (Wfpa/Wbkf)                                            | Mean:<br>Minimum: |                                        | Minimum:          | 3.53           | Minimum:          | 3.53            |
|            |                                                                           | 1 m m             | 1.20                                   |                   | (A. 1979)      | Maximum:          | 4.42            |
|            |                                                                           | Maximum:          | 30.32                                  | Maximum:          | 4.42           | Maximum:<br>Mean: | 94.00           |
| 14.        | Meander Length, ft (Lm)                                                   | Mean:             | 0.00                                   | Mean:             | 2020/04/20120  | Mean:<br>Minimum: | 33.00           |
|            |                                                                           | Minimum:          | 0.00                                   | Minimum:          | 14.20          | Maximum:          | 155.00          |
|            |                                                                           | Maximum:          | 0.00                                   | Maximum:<br>Mean: | 66.68<br>5.07  | Maximum:<br>Mean: | 5.07            |
| 15.        | Meander Length Ratio                                                      | Mean:             | 0.00                                   | Mean:<br>Minimum: | 1.78           | Minimum:          | 1.78            |
|            | (Lm/Wbkf)                                                                 | Minimum:          | 0.00                                   | Maximum:          | 8.37           | Maximum:          | 8.37            |
|            |                                                                           | Maximum:          | 0.00                                   |                   | 21.08          | Maximum.<br>Mean: | 49.00           |
| 16.        | Radius of Curvature, ft (Rc)                                              | Mean:             | 0.00                                   | Mean:             | 2012 0000      | Minimum:          | 19.00           |
|            |                                                                           | Minimum:          | 0.00                                   | Minimum:          | 8.17           | Maximum:          | 115.00          |
|            |                                                                           | Maximum:          | 0.00                                   | Maximum:          | 49.47          |                   |                 |
|            | Ratio of Radius of Curvature to                                           | Mean:             | 0.00                                   | Mean:             | 2.65           | Mean:             | 2.65            |
|            | Width (Rc/Wbkf)                                                           | Minimum:          | 0.00                                   | Minimum:          | 1.03           | Minimum:          | 1.03            |
|            | 5 1 17/11 C 475 1                                                         | Maximum:          | 0.00                                   | Maximum:          | 6.21           | Maximum:          | 6.21            |
| 18.        | Belt Width, ft (Wblt)                                                     | Mean:             | 0.00                                   | Mean:             | 28.82          | Mean:             | 67.00           |
|            |                                                                           | Minimum:          | 0.00                                   | Minimum:          | 15.49          | Minimum:          | 36.00           |
| 1,2000     |                                                                           | Maximum:          | 0.00                                   | Maximum:          | 64.53          | Maximum:          | 150.00          |
| 19.        | Meander Width Ratio (Wblt/Wbkf)                                           | Mean:             | 0.00                                   | Mean:             | 3.62           | Mean:             | 3.62            |
|            |                                                                           | Minimum:          | 0.00                                   | Minimum:          | 1.94           | Minimum:          | 1.94            |
|            |                                                                           | Maximum:          | 0.00                                   | Maximum:          | 8.10           | Maximum:          | 8.10            |
| 20.        | Low Bank Height, ft (LBH)                                                 | Mean:             | 4.54                                   | Mean:             | 0.73           | Mean:             | 2.30            |
|            |                                                                           | Minimum:          | 2.60                                   | Minimum:          | 0.59           | Minimum:          | 2.09            |
|            | o: :                                                                      | Maximum:          | 6.47                                   | Maximum:          | 0.90           | Maximum:          | 2.67            |
| 21.        | Sinuosity (K)                                                             | Mean:             | 1.05                                   | Mean:             | 1.34           | Mean:             | 1.46            |
| 00         | Multure Classes (MC)                                                      |                   |                                        |                   |                |                   |                 |
| 22         | Valley Slope (VS)                                                         | Mean:             | 0.01520                                | Mean:             | 0.01520        | Mean:             | 0.01310         |
| 23         | Average Water Surface Slope (S) =                                         |                   |                                        |                   |                |                   |                 |
| 23.        | (VS/K)                                                                    | Mean:             | 0.01448                                | Mean:             | 0.01134        | Mean:             | 0.00897         |
| 24.        | Pool Slope (Sp)                                                           | Mean:             | 0.00000                                | Mean:             | 0.00152        | Mean:             | 0.00120         |
| -7.        |                                                                           | Minimum:          | 0.00000                                | Minimum:          | 0.00000        | Minimum:          | 0.00000         |
|            |                                                                           | Maximum:          | 0.00000                                | Maximum:          | 0.00547        | Maximum:          | 0.00433         |
| 25         | Ratio of Pool Slope to Average Water                                      |                   | 0.00                                   | Mean:             | 0.13           | Mean:             | 0.13            |
| 43.        | Slope (Sp/S)                                                              | Minimum:          | 0.00                                   | Minimum:          | 0.00           | Minimum:          | 0.00            |
| 1          |                                                                           |                   |                                        |                   |                |                   |                 |

| Project I.D. No. D06027-B (Little White Oak Stream Restoration Project) |                                               |                   |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                |  |
|-------------------------------------------------------------------------|-----------------------------------------------|-------------------|------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------|--|
|                                                                         | Variables                                     |                   | Existing Channel |                   | Proposed Reach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Í                 | Reference Reac                                                                                                 |  |
|                                                                         |                                               | NAME              | R2B              |                   | R2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | UT to Ostin Cree                                                                                               |  |
| 6.                                                                      | Riffle Slope (water surface facet slope)      | Mean:             | 0.00000          | Mean:             | 0.03587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean:             | 0.02837                                                                                                        |  |
|                                                                         | (Srif)                                        | Minimum:          | 0.00000          | Minimum:          | 0.00799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minimum:          | 0.00632                                                                                                        |  |
|                                                                         |                                               | Maximum:          | 0.00000          | Maximum:          | 0.08282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maximum:          | 0.06551                                                                                                        |  |
| 27.                                                                     | Ratio of Riffle Slope to Average              | Mean:             | 0.00             | Mean:             | 3.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean:             | 3.16                                                                                                           |  |
|                                                                         | Water Slope (Srif/S)                          | Minimum:          | 0.00             | Minimum:          | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum:          | 0.70                                                                                                           |  |
|                                                                         |                                               | Maximum:          | 0.00             | Maximum:          | 7.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum:          | 7.30                                                                                                           |  |
| 28.                                                                     | Run Slope (water surface facet slope)         | Mean:             | 0.00000          | Mean:             | 0.03063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean:             | 0.02423                                                                                                        |  |
|                                                                         | (Srun)                                        | Minimum:          | 0.00000          | Minimum:          | 0.01142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minimum:          | 0.00903                                                                                                        |  |
|                                                                         |                                               | Maximum:          | 0.00000          | Maximum:          | 0.09990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maximum:          | 0.07902                                                                                                        |  |
| .9.                                                                     | Ratio Run Slope/Average Water                 | Mean:             | 0.00             | Mean:             | 2.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean:             | 2.70                                                                                                           |  |
|                                                                         | Surface Slope (Srun/S)                        | Minimum:          | 0.00             | Minimum:          | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum:          | 1.01                                                                                                           |  |
|                                                                         |                                               | Maximum:          | 0.00             | Maximum:          | 8.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum:          | 8.81                                                                                                           |  |
| 0                                                                       | Slope of Glide (water surface facet           | Mean:             | 0.00000          | Mean:             | 0.00411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean:             | 0.00325                                                                                                        |  |
| 10.                                                                     | slope) (Sg)                                   | Minimum:          | 0.00000          | Minimum:          | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Minimum:          | 0.00000                                                                                                        |  |
|                                                                         |                                               | Maximum:          | 0.00000          | Maximum:          | 0.01649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maximum:          | 0.01304                                                                                                        |  |
| 1                                                                       | Ratio Glide Slope/Average Water               | Mean:             | 0.00             | Mean:             | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean:             | 0.36                                                                                                           |  |
| 91.                                                                     | Surface Slope (Sg/S)                          | Minimum:          | 0.00             | Minimum:          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum:          | 0.00                                                                                                           |  |
|                                                                         | Surface Slope (Sg/S)                          | Maximum:          | 0.00             | Maximum:          | 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum:          |                                                                                                                |  |
|                                                                         |                                               |                   |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                 | 1.45                                                                                                           |  |
| 52.                                                                     | Maximum Pool Depth, ft (dpool)                | Mean:             | 0.00             | Mean:             | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean:             | 2.88                                                                                                           |  |
|                                                                         |                                               | Minimum:          | 0.00             | Minimum:          | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum:          | 2.17                                                                                                           |  |
|                                                                         |                                               | Maximum:          | 0.00             | Maximum:          | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum:          | 3.32                                                                                                           |  |
| 33.                                                                     | Ratio of Maximum Pool Depth to                | Mean:             | 0.00             | Mean:             | 1.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean:             | 1.76                                                                                                           |  |
|                                                                         | Mean Depth (dpool/dbkf)                       | Minimum:          | 0.00             | Minimum:          | 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum:          | 1.32                                                                                                           |  |
|                                                                         |                                               | Maximum:          | 0.00             | Maximum:          | 2.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum:          | 2.02                                                                                                           |  |
| 34.                                                                     | Max Run Depth, ft (drun)                      | Mean:             | 0.00             | Mean:             | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean:             | 2.34                                                                                                           |  |
|                                                                         |                                               | Minimum:          | 0.00             | Minimum:          | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum:          | 2.21                                                                                                           |  |
|                                                                         |                                               | Maximum:          | 0.00             | Maximum:          | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum:          | 2.72                                                                                                           |  |
| 35.                                                                     | Ratio Max Run Depth/Bankfull Mean             | Mean:             | 0.00             | Mean:             | 1.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean:             | 1.43                                                                                                           |  |
|                                                                         | Depth (drun/dbkf)                             | Minimum:          | 0.00             | Minimum:          | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum:          | 1.35                                                                                                           |  |
|                                                                         |                                               | Maximum:          | 0.00             | Maximum:          | 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum:          | 1.66                                                                                                           |  |
| 36.                                                                     | Maximum Glide Depth, ft (dg)                  | Mean:             | 0.00             | Mean:             | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean:             | 2.10                                                                                                           |  |
|                                                                         |                                               | Minimum:          | 0.00             | Minimum:          | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum:          | 1.69                                                                                                           |  |
|                                                                         |                                               | Maximum:          | 0.00             | Maximum:          | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum:          | 2.54                                                                                                           |  |
| 37.                                                                     | Ratio of Max Glide Depth/Bankfull             | Mean:             | 0.00             | Mean:             | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean:             | 1.28                                                                                                           |  |
| <i>,,,</i>                                                              | Mean Depth (dg/dbkf)                          | Minimum:          | 0.00             | Minimum:          | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum:          | 1.03                                                                                                           |  |
|                                                                         | Mean Depth (dg/ dokt)                         | Maximum:          | 0.00             | Maximum:          | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum:          | 1.55                                                                                                           |  |
| 0                                                                       | $D_{1}$ W/ Jeb (c (W/b) (c))                  | Maximum:<br>Mean: | 0.00             | Mean:             | 6.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean:             | 15.33                                                                                                          |  |
| 38.                                                                     | Pool Width, ft (Wbkfp)                        | 8.20              |                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum:          |                                                                                                                |  |
|                                                                         |                                               | Minimum:          | 0.00             | Minimum:          | 5.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | 12.11                                                                                                          |  |
| _                                                                       |                                               | Maximum:          | 0.00             | Maximum:          | 8.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum:          | 18.90                                                                                                          |  |
| 39.                                                                     | Ratio of Pool Width to Bankfull               | Mean:             | #DIV/0!          | Mean:             | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean:             | 0.83                                                                                                           |  |
|                                                                         | Width (Wbkfp/Wbkf)                            | Minimum:          | 0.00             | Minimum:          | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum:          | 0.65                                                                                                           |  |
|                                                                         |                                               | Maximum:          | 0.00             | Maximum:          | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum:          | 1.02                                                                                                           |  |
| 10.                                                                     | Pool Cross Sectional Area, sq ft              | Mean:             | 0.00             | Mean:             | 4.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean:             | 28.59                                                                                                          |  |
|                                                                         | (Apool)                                       | Minimum:          | 0.00             | Minimum:          | 3.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum:          | 21.28                                                                                                          |  |
|                                                                         |                                               | Maximum:          | 0.00             | Maximum:          | 6.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum:          | 38.82                                                                                                          |  |
| 11.                                                                     | Ratio of Pool Area to Bankfull Riffle         | Mean:             | #DIV/0!          | Mean:             | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean:             | 0.95                                                                                                           |  |
|                                                                         | Area (Apool/Abkf)                             | Minimum:          | 0.00             | Minimum:          | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum:          | 0.70                                                                                                           |  |
|                                                                         |                                               | Maximum:          | 0.00             | Maximum:          | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum:          | 1.28                                                                                                           |  |
| 12.                                                                     | Pool to Pool Spacing, ft (p-p)                | Mean:             | 0.00             | Mean:             | 33.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mean:             | 78.86                                                                                                          |  |
|                                                                         |                                               | Minimum:          | 0.00             | Minimum:          | 21.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Minimum:          | 50.30                                                                                                          |  |
|                                                                         |                                               | Maximum:          | 0.00             | Maximum:          | 45.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximum:          | 105.84                                                                                                         |  |
| 13.                                                                     | Ratio of p-p Spacing to Bankfull              | Mean:             | 0.00             | Mean:             | 4.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean:             | 4.26                                                                                                           |  |
|                                                                         | Width (p-p/Wbkf)                              | Minimum:          | 0.00             | Minimum:          | 2.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum:          | 2.72                                                                                                           |  |
|                                                                         | w r,                                          | Maximum:          | 0.00             | Maximum:          | 5.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum:          | 5.71                                                                                                           |  |
| 1.1                                                                     | Pool Length, ft (Lp)                          | Mean:             | 0.00             | Mean:             | 15.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mean:             | 35.11                                                                                                          |  |
| 14.                                                                     | r oor rengin, it (r-p)                        | Minimum:          | 0.00             | Minimum:          | 7.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum:          | 18.34                                                                                                          |  |
| -T.                                                                     |                                               | Maximum:          | 0.00             | Maximum:          | 27.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximum:          | 62.87                                                                                                          |  |
|                                                                         |                                               |                   |                  | maximilu.         | 2/.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | uviaximum:        | 02.8/                                                                                                          |  |
|                                                                         | D.: (D.1)                                     |                   |                  |                   | A state of the local division of the local d |                   | the second s |  |
| 45.                                                                     | Ratio of Pool Length to Bankfull<br>(Lp/Wbkf) | Mean:<br>Minimum: | 0.00             | Mean:<br>Minimum: | 1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean:<br>Minimum: | 1.90<br>0.99                                                                                                   |  |

| _    | Pro                                         | ject I.D. No.     | D06027-B (Little WI | ite Oak Strea               | am Restoration Proje  | ct)      |                   |
|------|---------------------------------------------|-------------------|---------------------|-----------------------------|-----------------------|----------|-------------------|
|      |                                             |                   | Existing Channel    |                             | <b>Proposed Reach</b> |          | Reference Reach   |
|      | Variables                                   | NAME              | R2D                 | 2                           | R2D                   |          | UT to Ostin Creek |
| ι.   | Stream Type                                 |                   | Degraded E6         |                             | C6                    |          | C4/1              |
| 2.   | Drainage Area, sq. mi (acres)               |                   | 0.05 (31.65)        |                             | 0.05 (31.65)          |          | 0.867(554.9)      |
| 3.   | Bankfull Width, ft (Wbkf)                   | Mean:             | 5.50                |                             |                       | Mean:    | 18.52             |
|      |                                             | Minimum:          | 3.80                | Mean:                       | 7.97                  | Minimum: | 15.97             |
|      |                                             | Maximum:          | 7.20                |                             |                       | Maximum: | 20.60             |
| 4.   | Bankfull Mean Depth, ft (dbkf)              | Mean:             | 0.75                |                             |                       | Mean:    | 1.64              |
|      |                                             | Minimum:          | 0.70                | Mean:                       | 0.63                  | Minimum: | 1.58              |
|      |                                             | Maximum:          | 0.80                |                             |                       | Maximum: | 1.72              |
| 5.   | Width/Depth Ratio (Wbkf/dbkf)               | Mean:             | 7.05                |                             |                       | Mean:    | 11.34             |
|      |                                             | Minimum:          | 5.26                | Mean:                       | 12.70                 | Minimum: | 9.28              |
|      |                                             | Maximum:          | 8.84                |                             |                       | Maximum: | 12.72             |
| 6.   | Bankfull Cross-Sectional Area, sq ft        | Mean:             | 4.25                |                             |                       | Mean:    | 30.25             |
|      | (Abkf)                                      | Minimum:          | 2.70                | Mean:                       | 5.00                  | Minimum: | 27.41             |
|      | 8 N                                         | Maximum:          | 5.80                |                             |                       | Maximum: | 33.37             |
| 7.   | Bankfull Mean Velocity, fps (Vbkf)          | Mean:             | 5.3                 | Mean:                       | 4.5                   | Mean:    | 4.2               |
| 8.   | Bankfull Discharge, cfs (Qbkf)              | Mean:             | 22                  | Mean:                       | 22                    | Mean:    | 128               |
| 9.   | Maximum Bankfull Depth, ft (dmbkf)          | Mean:             | 1.40                | Mean:                       | 0.73                  | Mean:    | 1.90              |
|      | mannun baratur Deput, it (unitar)           | Minimum:          | 1.15                | Minimum:                    | 0.59                  | Minimum: | 1.54              |
|      |                                             | Maximum:          | 1.65                | Maximum:                    | 0.90                  | Maximum: | 2.36              |
| 0    | Maximum Riffle Depth/Mean Riffle            | Mean:             | 1.81                | Mean:                       | 1.16                  | Mean:    | 1.16              |
| υ.   | Depth (dmbkf/dbkf)                          | Minimum:          | 1.49                | Minimum:                    | 0.94                  | Minimum: | 0.94              |
|      | - Por (amont/ doar)                         | Maximum:          | 2.14                | Maximum:                    | 1.44                  | Maximum: | 1.44              |
| 1    | Ratio of Low Bank Height to                 | Mean:             | 3.23                | Mean:                       | 1.00                  | Mean:    | 1.23              |
| 1.   | Maximum Bankfull Depth                      | Minimum:          | 2.47                | Minimum:                    | 1.00                  | Minimum: | 1.01              |
|      | (LBH/dmbkf)                                 | Maximum:          | 4.01                | Maximum:                    | 1.00                  | Maximum: | 1.42              |
| 0    |                                             | Maximum.<br>Mean: | 10.49               | Mean:                       | 30.52                 | Mean:    | 70.18             |
| 2.   | width of Flood Frone Area, it (wipa)        | Minimum:          | 8.37                | Minimum:                    | 28.15                 | Minimum: | 67.15             |
|      |                                             | Maximum:          | 12.60               | Maximum:                    | 35.23                 | Maximum: | 72.78             |
| -    | Enter have been average (With               | Maximum:<br>Mean: | 1.99                | Mean:                       | 3.83                  | Mean:    | 3.83              |
| 3.   | Entrenchment Ratio (Wfpa/Wbkf)              | Mean:<br>Minimum: | 1.76                | Minimum:                    | 3.53                  | Minimum: | 3.53              |
|      |                                             |                   |                     | overse and the store of the | 4.42                  | Maximum: | 4.42              |
|      |                                             | Maximum:          | 2.21                | Maximum:                    |                       |          | 94.00             |
| 14.  | Meander Length, ft (Lm)                     | Mean:             | 0.00                | Mean:                       | 40.44                 | Mean:    | CONTRACTOR OF A   |
|      |                                             | Minimum:          | 0.00                | Minimum:                    | 14.20                 | Minimum: | 33.00             |
| 1.00 |                                             | Maximum:          | 0.00                | Maximum:                    | 66.68                 | Maximum: | 155.00<br>5.07    |
| 15.  | Meander Length Ratio                        | Mean:             | 0.00                | Mean:                       | 5.07                  | Mean:    |                   |
|      | (Lm/Wbkf)                                   | Minimum:          | 0.00                | Minimum:                    | 1.78                  | Minimum: | 1.78              |
| _    |                                             | Maximum:          | 0.00                | Maximum:                    | 8.37                  | Maximum: | 8.37              |
| 16.  | Radius of Curvature, ft (Rc)                | Mean:             | 0.00                | Mean:                       | 21.08                 | Mean:    | 49.00             |
|      |                                             | Minimum:          | 0.00                | Minimum:                    | 8.17                  | Minimum: | 19.00             |
|      |                                             | Maximum:          | 0.00                | Maximum:                    | 49.47                 | Maximum: | 115.00            |
| 17.  | Ratio of Radius of Curvature to             | Mean:             | 0.00                | Mean:                       | 2.65                  | Mean:    | 2.65              |
|      | Width (Rc/Wbkf)                             | Minimum:          | 0.00                | Minimum:                    | 1.03                  | Minimum: | 1.03              |
|      |                                             | Maximum:          | 0.00                | Maximum:                    | 6.21                  | Maximum: | 6.21              |
| 18.  | Belt Width, ft (Wblt)                       | Mean:             | 0.00                | Mean:                       | 28.82                 | Mean:    | 67.00             |
|      |                                             | Minimum:          | 0.00                | Minimum:                    | 15.49                 | Minimum: | 36.00             |
|      |                                             | Maximum:          | 0.00                | Maximum:                    | 64.53                 | Maximum: | 150.00            |
| 19.  | Meander Width Ratio (Wblt/Wbkf)             | Mean:             | 0.00                | Mean:                       | 3.62                  | Mean:    | 3.62              |
|      |                                             | Minimum:          | 0.00                | Minimum:                    | 1.94                  | Minimum: | 1.94              |
| _    |                                             | Maximum:          | 0.00                | Maximum:                    | 8.10                  | Maximum: | 8.10              |
| 20.  | Low Bank Height, ft (LBH)                   | Mean:             | 4.34                | Mean:                       | 0.73                  | Mean:    | 2.30              |
|      |                                             | Minimum:          | 4.07                | Minimum:                    | 0.59                  | Minimum: | 2.09              |
|      |                                             | Maximum:          | 4.61                | Maximum:                    | 0.90                  | Maximum: | 2.67              |
| 21.  | Sinuosity (K)                               | Mean:             | 1.12                | Mean:                       | 1.57                  | Mean:    | 1.46              |
| 22   | Valley Slope (VS)                           | Mean:             | 0.01240             | Mean:                       | 0.01240               | Mean:    | 0.01310           |
| 23.  | Average Water Surface Slope (S) =<br>(VS/K) | Mean:             | 0.01107             | Mean:                       | 0.00790               | Mean:    | 0.00897           |
| 24   | Pool Slope (Sp)                             | Mean:             | 0.00000             | Mean:                       | 0.00106               | Mean:    | 0.00120           |
| - Т. | copy (op)                                   | Minimum:          | 0.00000             | Minimum:                    | 0.00000               | Minimum: | 0.00000           |
|      |                                             | Maximum:          | 0.00000             | Maximum:                    | 0.00381               | Maximum: | 0.00433           |
| 25   | Ratio of Pool Slope to Average Water        | Maximum.<br>Mean: | 0.00                | Mean:                       | 0.13                  | Mean:    | 0.13              |
| 25.  | Slope (Sp/S)                                | Minimum:          | 0.00                | Minimum:                    | 0.00                  | Minimum: | 0.00              |
|      |                                             | minimum:          | 0.00                | minimitum:                  | 0.00                  | minimum. | 0.00              |


|                  | Variables                                               | í                    | . D06027-B (Little W<br>Existing Channel |                      | Proposed Reach | Í                    | Reference Reach   |
|------------------|---------------------------------------------------------|----------------------|------------------------------------------|----------------------|----------------|----------------------|-------------------|
|                  |                                                         | NAME                 | R2D                                      |                      | R2D            |                      | UT to Ostin Creel |
| 26.              | Riffle Slope (water surface facet slope)                | Mean:                | 0.00000                                  | Mean:                | 0.02497        | Mean:                | 0.02837           |
|                  | (Srif)                                                  | Minimum:             | 0.00000                                  | Minimum:             | 0.00556        | Minimum:             | 0.00632           |
|                  |                                                         | Maximum:             | 0.00000                                  | Maximum:             | 0.05766        | Maximum:             | 0.06551           |
| 27.              | Ratio of Riffle Slope to Average                        | Mean:                | 0.00                                     | Mean:                | 3.16           | Mean:                | 3.16              |
|                  | Water Slope (Srif/S)                                    | Minimum:             | 0.00                                     | Minimum:             | 0.70           | Minimum:             | 0.70              |
|                  |                                                         | Maximum:             | 0.00                                     | Maximum:             | 7.30           | Maximum:             | 7.30              |
| 28.              | Run Slope (water surface facet slope)                   | Mean:                | 0.00000                                  | Mean:                | 0.02133        | Mean:                | 0.02423           |
|                  | (Srun)                                                  | Minimum:             | 0.00000                                  | Minimum:             | 0.00795        | Minimum:             | 0.00903           |
| -                |                                                         | Maximum:             | 0.00000                                  | Maximum:             | 0.06956        | Maximum:             | 0.07902           |
| 29.              | Ratio Run Slope/Average Water                           | Mean:                | 0.00                                     | Mean:                | 2.70           | Mean:                | 2.70              |
|                  | Surface Slope (Srun/S)                                  | Minimum:             | 0.00                                     | Minimum:             | 1.01           | Minimum:             | 1.01              |
|                  |                                                         | Maximum:             | 0.00                                     | Maximum:             | 8.81           | Maximum:             | 8.81              |
| 30.              | Slope of Glide (water surface facet                     | Mean:                | 0.00000                                  | Mean:                | 0.00286        | Mean:                | 0.00325           |
|                  | slope) (Sg)                                             | Minimum:             | 0.00000                                  | Minimum:             | 0.00000        | Minimum:             | 0.00000           |
| 24               | Baria Clida Class / Assess Without                      | Maximum:             | 0.00000                                  | Maximum:             | 0.01148        | Maximum:             | 0.01304           |
| 51.              | Ratio Glide Slope/Average Water<br>Surface Slope (Sg/S) | Mean:<br>Minimum:    | 0.00                                     | Mean:<br>Minimum:    | 0.36           | Mean:<br>Minimum:    | 0.36              |
|                  | Surface Slope (Sg/S)                                    | Maximum:             | 0.00<br>0.00                             | Maximum:             | 0.00<br>1.45   | Maximum:             | 0.00              |
| 20               | Maximum Pool Depth, ft (dpool)                          | Mean:                | 0.00                                     | Maxinum:<br>Mean:    | 1.45           | Mean:                | 1.45<br>2.88      |
| 52.              | Maximum Poor Depui, it (upoor)                          | Minimum:             | 0.00                                     | Minimum:             | 0.83           | Minimum:             | 2.88              |
|                  |                                                         | Maximum:             | 0.00                                     | Maximum:             | 1.27           | Maximum:             | 3.32              |
| 22               | Ratio of Maximum Pool Depth to                          | Mean:                | 0.00                                     | Maximum.<br>Mean:    | 1.76           | Mean:                | 1.76              |
| 55.              | Mean Depth (dpool/dbkf)                                 | Minimum:             | 0.00                                     | Minimum:             | 1.32           | Minimum:             | 1.32              |
|                  | Mean Depth (dp001/dbkl)                                 | Maximum:             | 0.00                                     | Maximum:             | 2.02           | Maximum:             | 2.02              |
| 3.1              | Max Run Depth, ft (drun)                                | Mean:                | 0.00                                     | Mean:                | 0.90           | Mean:                | 2.34              |
| J <del>4</del> . | Max Kan Depui, it (draif)                               | Minimum:             | 0.00                                     | Minimum:             | 0.85           | Minimum:             | 2.21              |
|                  |                                                         | Maximum:             | 0.00                                     | Maximum:             | 1.04           | Maximum:             | 2.72              |
| 35.              | Ratio Max Run Depth/Bankfull Mean                       | Mean:                | 0.00                                     | Mean:                | 1.43           | Mean:                | 1.43              |
|                  | Depth (drun/dbkf)                                       | Minimum:             | 0.00                                     | Minimum:             | 1.35           | Minimum:             | 1.35              |
|                  | , , , ,                                                 | Maximum:             | 0.00                                     | Maximum:             | 1.66           | Maximum:             | 1.66              |
| 36.              | Maximum Glide Depth, ft (dg)                            | Mean:                | 0.00                                     | Mean:                | 0.80           | Mean:                | 2.10              |
|                  |                                                         | Minimum:             | 0.00                                     | Minimum:             | 0.65           | Minimum:             | 1.69              |
|                  |                                                         | Maximum:             | 0.00                                     | Maximum:             | 0.97           | Maximum:             | 2.54              |
| 37.              | Ratio of Max Glide Depth/Bankfull                       | Mean:                | 0.00                                     | Mean:                | 1.28           | Mean:                | 1.28              |
|                  | Mean Depth (dg/dbkf)                                    | Minimum:             | 0.00                                     | Minimum:             | 1.03           | Minimum:             | 1.03              |
|                  |                                                         | Maximum:             | 0.00                                     | Maximum:             | 1.55           | Maximum:             | 1.55              |
| 38.              | Pool Width, ft (Wbkfp)                                  | Mean:                | 0.00                                     | Mean:                | 6.59           | Mean:                | 15.33             |
|                  |                                                         | Minimum:             | 0.00                                     | Minimum:             | 5.21           | Minimum:             | 12.11             |
|                  |                                                         | Maximum:             | 0.00                                     | Maximum:             | 8.13           | Maximum:             | 18.90             |
| 39.              | Ratio of Pool Width to Bankfull                         | Mean:                | #DIV/0!                                  | Mean:                | 0.83           | Mean:                | 0.83              |
|                  | Width (Wbkfp/Wbkf)                                      | Minimum:             | 0.00                                     | Minimum:             | 0.65           | Minimum:             | 0.65              |
|                  |                                                         | Maximum:             | 0.00                                     | Maximum:             | 1.02           | Maximum:             | 1.02              |
| 40.              | Pool Cross Sectional Area, sq ft                        | Mean:                | 0.00                                     | Mean:                | 4.73           | Mean:                | 28.59             |
|                  | (Apool)                                                 | Minimum:             | 0.00                                     | Minimum:             | 3.52           | Minimum:             | 21.28             |
| _                |                                                         | Maximum:             | 0.00                                     | Maximum:             | 6.42           | Maximum:             | 38.82             |
| 41.              | Ratio of Pool Area to Bankfull Riffle                   | Mean:                | #DIV/0!                                  | Mean:                | 0.95           | Mean:                | 0.95              |
|                  | Area (Apool/Abkf)                                       | Minimum:             | 0.00                                     | Minimum:             | 0.70           | Minimum:             | 0.70              |
|                  | D. L. D. M. C. ( )                                      | Maximum:             | 0.00                                     | Maximum:             | 1.28           | Maximum:             | 1.28              |
| 42.              | Pool to Pool Spacing, ft (p-p)                          | Mean:                | 0.00                                     | Mean:                | 33.93          | Mean:                | 78.86             |
|                  |                                                         | Minimum:             | 0.00                                     | Minimum:             | 21.64          | Minimum:             | 50.30             |
| 10               | Defendence Construction De 16.1                         | Maximum:             | 0.00                                     | Maximum:             | 45.53          | Maximum:             | 105.84            |
| 43.              | Ratio of p-p Spacing to Bankfull                        | Mean:                | 0.00                                     | Mean:                | 4.26           | Mean:                | 4.26              |
|                  | Width (p-p/Wbkf)                                        | Minimum:             | 0.00                                     | Minimum:             | 2.72           | Minimum:             | 2.72              |
|                  | Deal Longth & (L.)                                      | Maximum:             | 0.00                                     | Maximum:             | 5.71           | Maximum:             | 5.71              |
| 44.              | Pool Length, ft (Lp)                                    | Mean:<br>Minimum     | 0.00                                     | Mean:<br>Minimum     | 15.10          | Mean:<br>Minimum     | 35.11             |
|                  |                                                         | Minimum:             | 0.00                                     | Minimum:             | 7.89           | Minimum:             | 18.34             |
| 17               | Pro- (P-1) P-16.                                        | Maximum:<br>Mean:    | 0.00                                     | Maximum:             | 27.05          | Maximum:             | 62.87             |
| 45.              | Ratio of Pool Length to Bankfull                        |                      | 0.00                                     | Mean:<br>Minimum     | 1.90           | Mean:                | 1.90              |
|                  | (Lp/Wbkf)                                               | Minimum:<br>Maximum: | 0.00<br>0.00                             | Minimum:<br>Maximum: | 0.99<br>3.39   | Minimum:<br>Maximum: | 0.99<br>3.39      |


|                  |               |                                 |                 | Tal | ble V. BEHI | and Sedime  | ent Export E | stimates for | · Project Site | e Streams  |    |     |      |          |                     |        |
|------------------|---------------|---------------------------------|-----------------|-----|-------------|-------------|--------------|--------------|----------------|------------|----|-----|------|----------|---------------------|--------|
|                  |               |                                 |                 |     | Little V    | Vhite Oak C | reek Strean  | n Restoratio | n (D06027-I    | <b>B</b> ) |    |     |      |          |                     |        |
| Time Point       | Segment/Reach | Linear<br>Footage or<br>Acreage | To see a second |     |             | Very High   |              |              |                | Moderate   |    | LOW | Vour | Very Low | Sediment            | Export |
|                  |               |                                 | ft              | %   | ft          | %           | ft           | %            | ft             | %          | ft | %   | ft   | %        | Yd <sup>3</sup> /yr | Ton/yr |
| Pre-Construction | R1            | 6530                            |                 |     | 5877        | 90          |              |              |                |            |    |     |      |          | 350                 | 455    |
|                  | R1A           | 906.1                           | 906.1           | 100 |             |             |              |              |                |            |    |     |      |          | 176                 | 229    |
|                  | R1B           | 800.4                           | 800.4           | 100 |             |             |              |              |                |            |    |     |      |          | 128                 | 167    |
|                  | R2 Upper      | 3981.9                          | 3583.7          | 90  |             |             |              |              |                |            |    |     |      |          | 424                 | 551    |
|                  | R2 Lower      | 1996.5                          | 1796.8          | 90  |             |             |              |              |                |            |    |     |      |          | 166                 | 216    |
|                  | R2A           | 625                             |                 |     | 625         | 100         |              |              |                |            |    |     |      |          | 25                  | 32     |
|                  | R2B           | 1713                            |                 |     |             |             | 1713         | 100          |                |            |    |     |      |          | 93                  | 120    |
|                  | R2C           | 1895.5                          | 1895.5          | 100 |             |             |              |              |                |            |    |     |      |          | 108                 | 140    |
|                  | R2D           | 525.9                           | 525.9           | 100 |             |             |              |              |                |            |    |     |      |          | 193                 | 250    |
|                  |               |                                 |                 |     |             |             |              |              |                |            |    |     | To   | tals     | 1662                | 2161   |

|                                              |                   |                                 |            | Table | VI. BEHI an | nd Sediment | Export Esti | mates for R | eference Rea | ach Streams |    |     |          |             |          |        |
|----------------------------------------------|-------------------|---------------------------------|------------|-------|-------------|-------------|-------------|-------------|--------------|-------------|----|-----|----------|-------------|----------|--------|
|                                              |                   |                                 |            |       | Little W    | Vhite Oak C | reek Stream | Restoration | n (D06027-B  | )           |    |     |          |             |          |        |
| Time Point                                   | Segment/Reach     | Linear<br>Footage or<br>Acreage | T v from o |       | Vores Hich  | very mgu    | tein        | ng<br>Ng    | o tomo booM  | Modelate    |    | 104 | то ГамоД | 4 CT ) 1704 | Sediment | Export |
|                                              |                   |                                 | ft         | %     | ft          | %           | ft          | %           | ft           | %           | ft | %   | ft       | %           | Yd3/yr   | Ton/y  |
| Pre-Construction of<br>Little White Oak Site | UT to Ostin Creek | 585                             |            |       |             |             |             |             | 585          | 100         |    |     |          |             | 32       | 41     |

|          |                                           | Table 7. Pfa         | nkuch Summary |             |        |           |  |  |  |  |  |
|----------|-------------------------------------------|----------------------|---------------|-------------|--------|-----------|--|--|--|--|--|
|          | Little White Oak Creek Stream Restoration |                      |               |             |        |           |  |  |  |  |  |
| Reach    | Sediment Supply                           | Stream Bed Stability | W/D Condition | Stream Type | Rating | Condition |  |  |  |  |  |
| R1       | High                                      | Degrading            | High          | E5          | 140    | Poor      |  |  |  |  |  |
| R1A      | High                                      | Degrading            | High          | B6c         | 114    | Poor      |  |  |  |  |  |
| R1B      | High                                      | Degrading            | High          | B6c         | 90     | Poor      |  |  |  |  |  |
| R2 Upper | High                                      | Degrading            | High          | E5          | 142    | Poor      |  |  |  |  |  |
| R2 Lower | High                                      | Degrading            | High          | E5          | 121    | Poor      |  |  |  |  |  |
| R2A      | Mod                                       | Degrading            | Normal        | B4c         | 95     | Poor      |  |  |  |  |  |
| R2B      | V. High                                   | Degrading            | High          | G5c         | 136    | Poor      |  |  |  |  |  |
| R2C      | High                                      | Degrading            | High          | G6c         | 122    | Poor      |  |  |  |  |  |
| R2D      | High                                      | Degrading            | High          | B6c         | 124    | Poor      |  |  |  |  |  |

|                | Ta           | ble 8. Designed Vegetative C    | ommunities                |                    |
|----------------|--------------|---------------------------------|---------------------------|--------------------|
|                | Project Numb | er D06027-B (Little White Oak C | reek Stream Restoration)  |                    |
| Planting Zone  | Acres        | Zone Description                | Recommendee               | d Plant Species*   |
| T lanting Zone | Alles        | Zone Description                | Scientific Name           | Common Name        |
|                |              |                                 | Cornus amomum             | Silky dogwood      |
|                |              |                                 | Salix sericea             | Silky willow       |
| 1              | 8.30         | Stream Banks                    | Salix nigra               | Black willow       |
| 1              | 8.30         | Sueam Banks                     | Cephalanthus occidentalis | Buttonbush         |
|                |              |                                 | Alnus serrulata           | Tag alder          |
|                |              |                                 | Populus deltoides         | Cottonwood         |
|                | •            |                                 |                           |                    |
|                |              |                                 | Ulmus americana           | American elm       |
|                |              |                                 | Fraxinus americana        | White ash          |
|                |              |                                 | Cornus amomum             | silky dogwood      |
|                |              |                                 | Carpinus caroliniana      | Ironwood           |
|                |              |                                 | Cephalanthus occidentalis | Buttonbush         |
|                |              |                                 | Lindera benzoin           | Spicebush          |
| 2              | 14.30        | Riparian Buffer                 | Alnus serrulata           | Tag alder          |
|                |              |                                 | Plantanus occidentalis    | Sycamore           |
|                |              |                                 | Betula nigra              | River birch        |
|                |              |                                 | Populus deltoides         | Cottonwood         |
|                |              |                                 | Corylus americana         | American hazelnut  |
|                |              |                                 | Quercus michauxii         | Swamp chestnut oak |
|                |              |                                 | Sambucus canadensis       | elderberry         |
|                |              |                                 |                           |                    |
|                |              |                                 | Cornus amomum             | Silky dogwood      |
|                |              |                                 | Salix sericea             | Silky willow       |
| 3              | 0.35         | Wetland Pockets/Oxbows          | Salix nigra               | Black willow       |
| 5              | 0.55         | Wettand Toexets/ 0x00ws         | Cephalanthus occidentalis | Buttonbush         |
|                |              |                                 | Alnus serrulata           | Tag alder          |
|                |              |                                 | Sambucus canadensis       | elderberry         |
|                | 1            |                                 |                           |                    |
|                |              |                                 | Pinus strobus             | Eastern white pine |
|                |              |                                 | Pinus echinata            | Shortleaf pine     |
|                |              |                                 | Pinus virginiana          | Virginia Pine      |
|                |              |                                 | Quercus alba              | White oak          |
|                |              |                                 | Quercus falcata           | Southern red oak   |
|                |              |                                 | Quercus stellata          | Post oak           |
|                |              |                                 | Juniperus virginiana      | Eastern red cedar  |
| 4              | 32.50        | Upland Buffer                   | Diospyros virginiana      | Common persimmon   |
|                |              |                                 | Juglans nigra             | Back walnut        |
|                |              |                                 | Carya tomentosa           | Mockernut hickory  |
|                |              |                                 | Carya glabra              | Pignut hickory     |
|                |              |                                 | Ilex opaca                | American holly     |
|                |              |                                 | Cornus florida            | Flowering dogwood  |
|                |              |                                 | Juglans nigra             | Black walnut       |
|                |              |                                 | Fagus grandifolia         | American beech     |





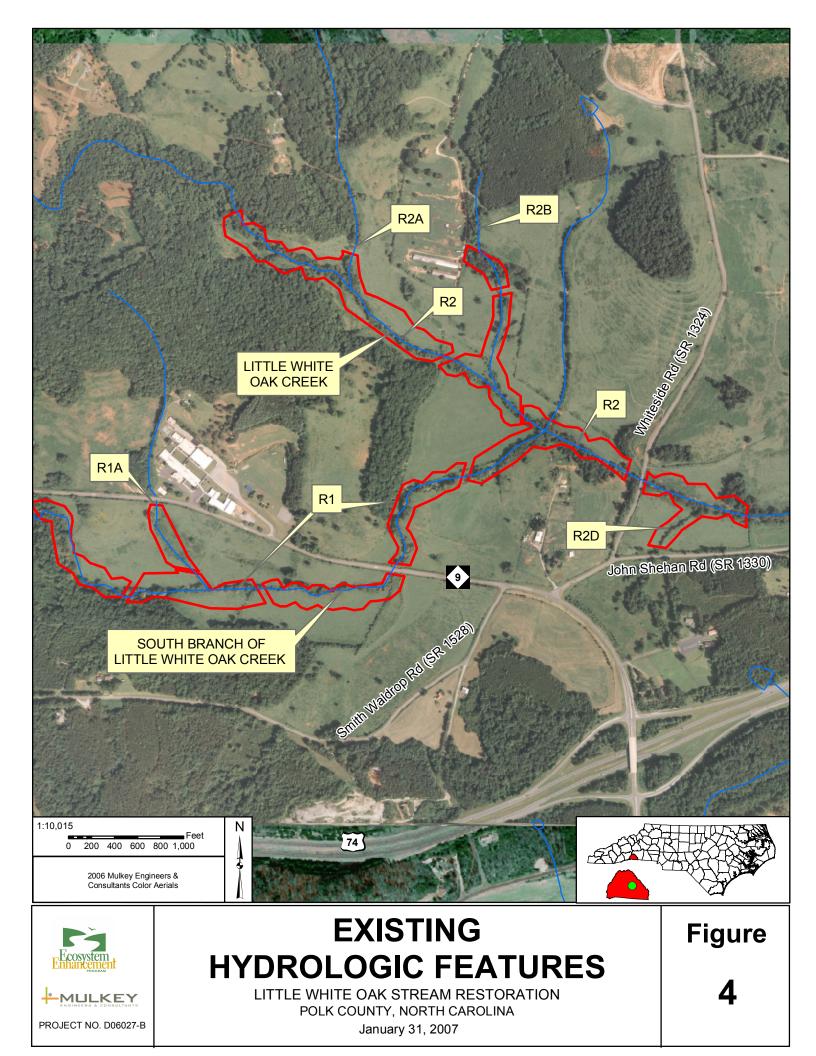
# Legend Little White Oak Creek Soils Chewacla Loam, 0 to 2 Percent Slopes, Occasionally Flooded Dogue-Roanoke Complex, 0 to 6 Percent Slopes, Rarely Flooded

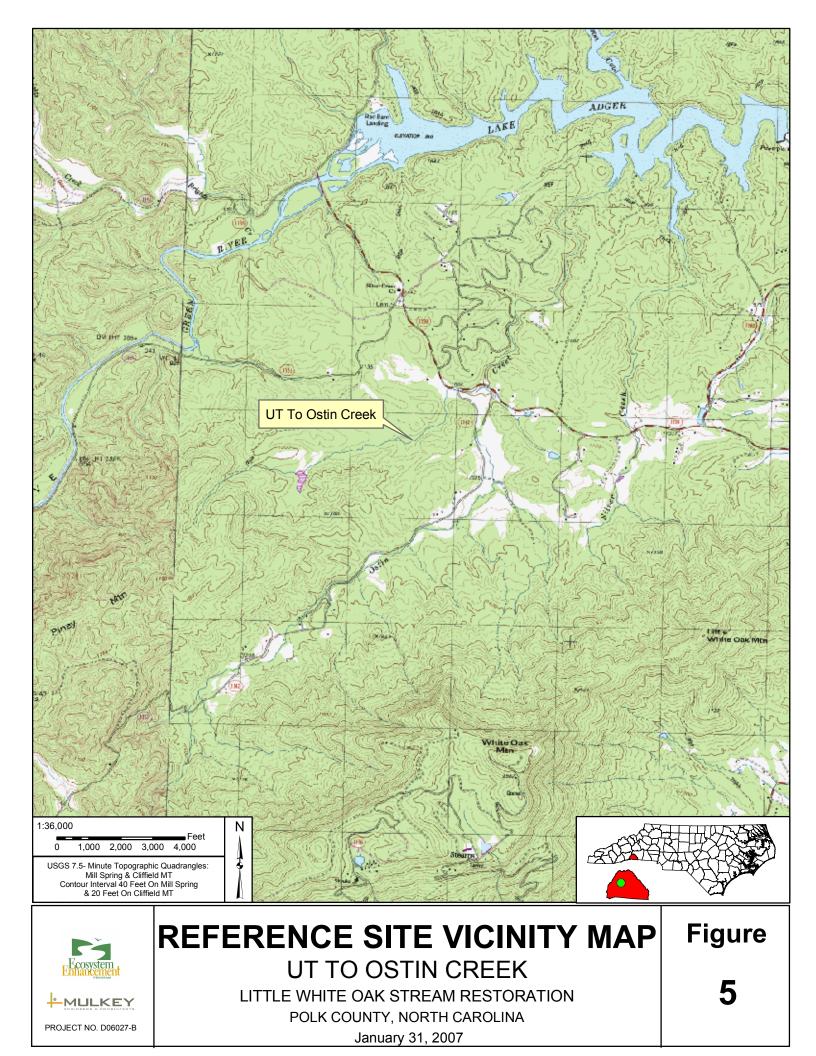
- Grover Loam, 25 to 45 Percent Slopes
- Hiawassee Clay Loam, 2 to 8 Percent Slopes, Eroded
- Hiawassee Clay Loam, 8 to 15 Percent Slopes, Eroded
- Riverview Loam, 0 to 2 Percent Slopes, Ocassionally Flooded
  Streams

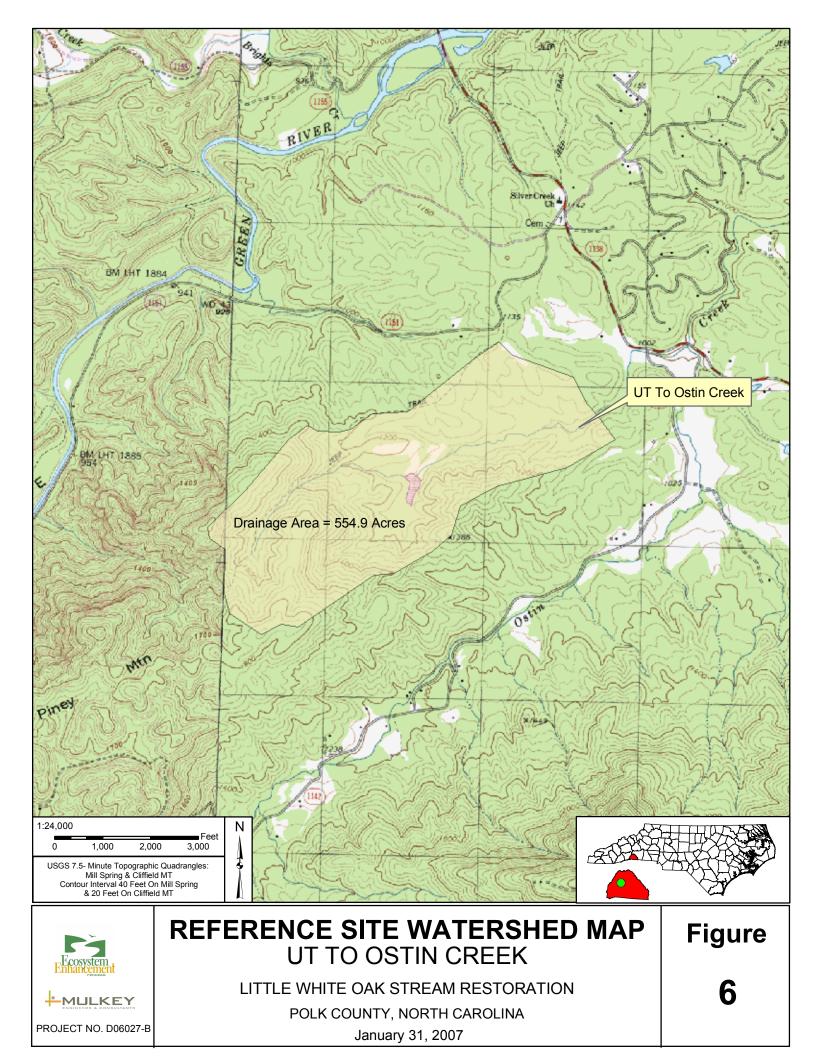
Ν

Feet

200 400 600 800 1,000


2006 Mulkey Engineers & Consultants Color Aerials NRCS Soils Data


1:10,000


0

## **SOILS MAP** LITTLE WHITE OAK STREAM RESTORATION POLK COUNTY, NORTH CAROLINA January 31, 2007

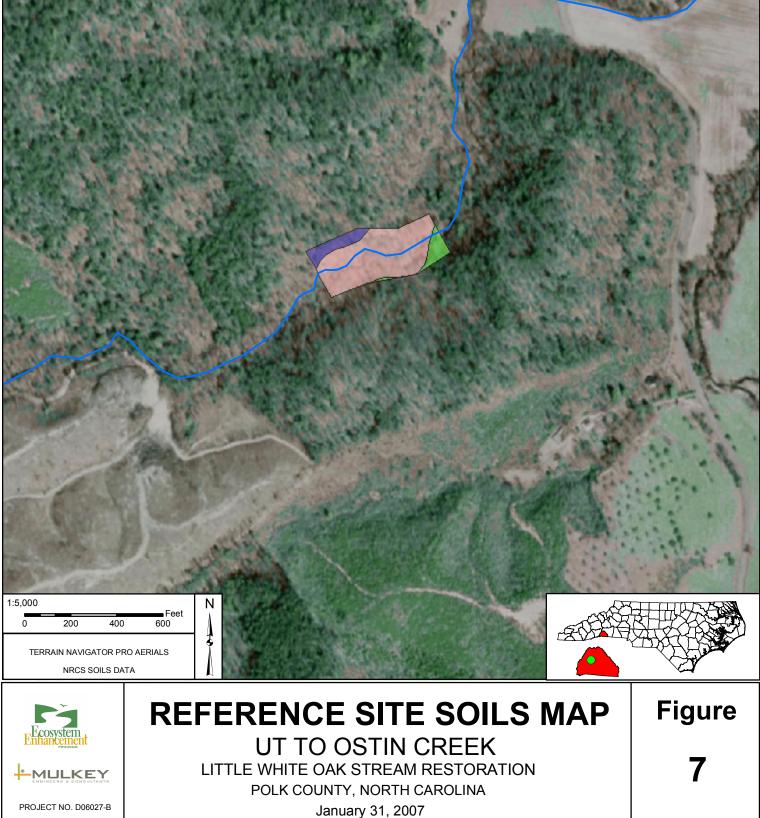
Figure 3







## Legend


UT To Ostin Creek

#### Soils

ChA = Chewacla Loam, 0 to 2 Percent Slopes, Occasionally flooded

- EvE = Evard-Cowee complex, 30 to 50 percent slopes, stony
- PaD2 = Pacolet sandy clay loam, 15 to 25 percent slopes, eroded





## Legend

UT To Ostin Creek

#### **Vegetative Communities**

- Mixed Hardwoods/Conifers
- Mixed Upland Hardwoods

## REFERENCE SITE VEGETATIVE COMMUNITIES MAP UT TO OSTIN CREEK LITTLE WHITE OAK STREAM RESTORATION





100

200

TERRAIN NAVIGATOR PRO AERIALS BASIN PRO LANDUSE DATA Ν

Feet

400

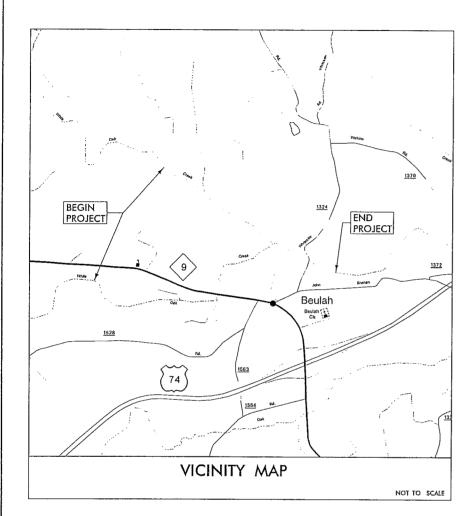
300

1:3,000

0

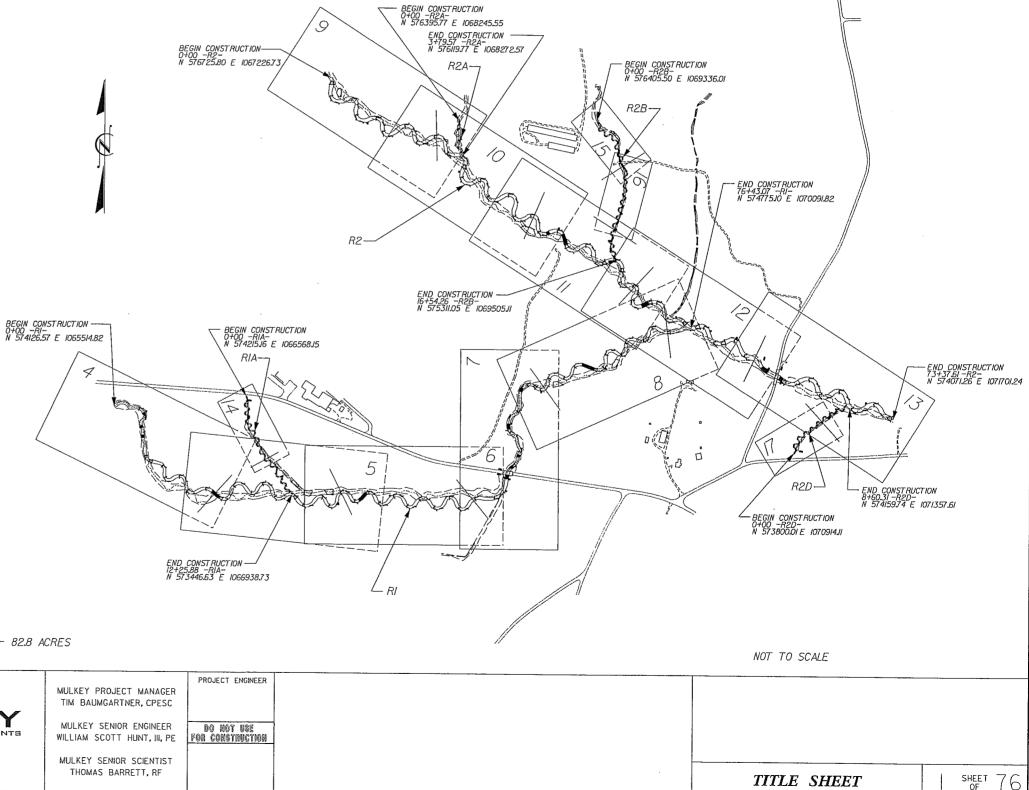
PROJECT NO. D06027-B

#### POLK COUNTY, NORTH CAROLINA January 31, 2007


8

Figure




## LITTLE WHITE OAK CREEK STREAM RESTORATION SITE

LOCATION: NORTHEAST OF THE INTERSECTION OF NC 9 AND US 74 (EXIT 167)



|                | INDEX OF SHEETS          |                |
|----------------|--------------------------|----------------|
| SHEET NUMBER   | SHEET                    |                |
| 1              | TITLE SHEET              |                |
| 1A             | LEGEND                   |                |
| 2              | GENERAL NOTES            |                |
| 2A - 2G        | CONSTRUCTION SEQUENCE    |                |
| 2H             | MORPHOLOGICAL TABLES     |                |
| 2I 2J          | TYPICALS                 |                |
| 2K – 2U        | DETAILS                  |                |
| 3 - 3A         | PROPOSED PROFILE DATA    |                |
| 3B – 3D        | STRUCTURE TABLES         |                |
| 4 - 19         | PLAN AND PROFILE         |                |
| EC1 - EC3      | EROSION CONTROL OVERVIEW | (NOT INCLUDED) |
| EC-4 - EC-17   | EROSION CONTROL PLANS    | (NOT INCLUDED) |
| PLT-4 - PLT-17 | PLANTING PLANS           |                |

Đ



DISTURBED AREA = +/- 82.8 ACRES

| REVISIONS                         | SCALE<br>AS SHOWN     | PLANS PREPARED BY:                     |                            | PROJECT ENGINEE  |
|-----------------------------------|-----------------------|----------------------------------------|----------------------------|------------------|
| DATE BY DESCRIPTION               | AS SHOWN              |                                        | MULKEY PROJECT MANAGER     |                  |
| 1/31/07 JTL ISSUED FOR PERMITTING | DATE: 1/31/07         | 1                                      | TIM BAUMGARTNER, CPESC     |                  |
|                                   | DESIGNED: WSH         | +-MULKEY                               |                            |                  |
|                                   | DRAWN: JTL            | ENGINEERS & CONSULTANTS                | MULKEY SENIOR ENGINEER     | DO NOT USE       |
|                                   | CHECKED: WSH          |                                        | WILLIAM SCOTT HUNT, II, PE | FOR CONSTRUCTION |
|                                   | APPROVED: WSH         | PO Box 33127<br>Raleigh, N.C. 27636    |                            |                  |
|                                   |                       | (919) 851-1912<br>(919) 851-1918 (FAX) | MULKEY SENIOR SCIENTIST    |                  |
|                                   | MULKEY PROJECT NUMBER | WWW.MULKEYING.COM                      | THOMAS BARRETT, RF         |                  |
|                                   | 2006237.00            |                                        |                            |                  |

## NOTE: NOT TO SCALE Not all symbols used in plans

| BOUNDARIES AND PROPERTY:        |
|---------------------------------|
| State Line                      |
| County Line                     |
| Township Line                   |
| City Line                       |
| Reservation Line                |
| Property Line                   |
| Existing Iron Pin               |
| Property Corner                 |
| Property Monument               |
| Temporary Fence                 |
| Proposed Woven Wire Fence       |
| Proposed Chain Link Fence       |
| Proposed Barbed Wire Fence      |
| Tree Protection Fence           |
| Existing Wetland Boundary       |
| Proposed Oxbow Wetland Boundary |
| Proposed Conservation Easement  |
| Construction Limits             |
| Limits Of Disturbance           |
| Proposed Gate                   |
| Benchmark                       |
|                                 |

#### BUILDINGS AND OTHER CULTURE:

| Sign                                     | S           |
|------------------------------------------|-------------|
| Well · · · · · · · · · · · · · · · · · · | Q<br>W      |
| Foundation                               |             |
| Area Outline                             |             |
| Building                                 |             |
| School                                   |             |
| Church                                   | <u>ط</u> ئے |

#### HYDROLOGY:

| Stream or Body of Water                      |
|----------------------------------------------|
| Hydro, Pool or Reservoir                     |
| River Basin Buffer                           |
| Flow Arrow                                   |
| Disappearing Stream                          |
| Spring · · · · · · · · · · · · · · · · · · · |
| Thalweg                                      |
| Top Of Bank                                  |
| Swamp Marsh                                  |
| Proposed Lateral, Tail, Head Ditch           |

#### RAILROADS: Standard Guage RR Signal Milepost ⊙ MILEPOST 35 SWITCH Switch RR Abandoned ROADS AND RELATED FEATURES: Existing Edge of Pavement Existing Curb Existing Soil Road Existing Metal Guardrail Existing Cable Guiderail VEGETATION: Single Shrub Hedge Woods Line Vineyard Vineyard EXISTING STRUCTURES: MAJOR: Bridge, Tunnel or Box Culvert Bridge Wing Wall, Head Wall and End Wall MINOR: Head and End Wall

| Pipe Culvert                        |             |
|-------------------------------------|-------------|
| Footbridge                          | ······      |
| Drainage Box: Catch Basin, DI or JB | СВ          |
| Paved Ditch Gutter                  |             |
| Storm Sewer Manhole                 | \$          |
| Storm Sewer                         | 5           |
| UTILITIES:                          |             |
| POWER:                              |             |
| Existing Power Pole                 |             |
| Existing Joint Use Pole             |             |
| Power Manhole                       | P           |
| Power Line Tower                    | $\boxtimes$ |
| Power Transformer                   | $\bowtie$   |
| U/G Power Cable Hand Hole           | HH          |
| HFrame Pole                         | <b>6</b> 6  |
| Recorded U/G Power Line             | P           |
|                                     |             |
| Gas Valve                           | $\diamond$  |
| Gas Meter                           | ¢           |
| Recorded U/G Gas Line               |             |

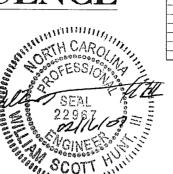
Above Ground Gas Line

# LEGGEND

| Telephone Pedestal                     | T               |
|----------------------------------------|-----------------|
| Telephone Cell Tower                   | <b>,I</b> ,     |
| U/G Telephone Cable Hand Hole          | HH              |
| Recorded U/G Telephone Cable           | 1               |
| Recorded U/G Telephone Conduit         |                 |
| Recorded U/G Fiber Optics Cable        | T F0            |
| WATER:                                 |                 |
| Water Manhole                          | Ŵ               |
| Water Meter                            | 0               |
| Water Valve                            | $\otimes$       |
| Water Hydrant                          | ŵ               |
| Recorded U/G Water Line                | ¥               |
| Above Ground Water Line                | A/G Woter       |
| TV:                                    |                 |
| TV Satellite Dish                      | K               |
| TV Pedestal                            | C               |
| TV Tower                               | $\otimes$       |
| U/G TV Cable Hand Hole                 | البا            |
| Recorded U/G TV Cable                  |                 |
| Recorded U/G Fiber Optic Cable         |                 |
| MISCELLANEOUS:                         |                 |
| Utility Pole                           |                 |
| Utility Pole with Base                 |                 |
| Utility Located Object                 | 0               |
| Utility Traffic Signal Box             | 5               |
| Utility Unknown U/G Line               |                 |
| U/G Tank; Water, Gas, Oil              | []              |
| A/G Tank; Water, Gas, Oil              |                 |
| Abandoned According to Utility Records |                 |
| End of Information                     | E.O.I.          |
|                                        | L.O.I.          |
| SANITARY SEWER:                        |                 |
| Sanitary Sewer Manhole                 | (5)             |
| Sanitary Sewer Cleanout                | ŧ               |
| U/G Sanitary Sewer Line                | SS              |
| Above Ground Sanitary Sewer            | A/G Sanitary Se |
| Recorded SS Forced Main Line           |                 |
|                                        |                 |

| REVISIONS<br>DESCRIPTION | PROJECT ENGINEER          | PROJECT REFERENCE NO.<br>LITTLE WHITE OAK CREEK                          |                                          |
|--------------------------|---------------------------|--------------------------------------------------------------------------|------------------------------------------|
| ISSUED FOR PERMITTING    | DO NOT USE                | LITTLE WHITE UAK CREEK                                                   | )                                        |
|                          | FOR CONSTRUCTION          | L                                                                        |                                          |
|                          |                           |                                                                          | <b>SEY</b>                               |
| 1                        |                           | PO Box 33127<br>Raleigh, N.C. 276<br>(919) B51-1912                      | 36                                       |
|                          |                           | (919) 851-1912<br>(919) 851-1912<br>(919) 851-1918 (F)<br>WWW.MULKEYING. | ах)<br>Сом                               |
| PROPOS                   | SED STREA                 | M WORK:                                                                  |                                          |
| STREAM ST                |                           |                                                                          |                                          |
| Rock Cross               | vane                      |                                                                          | Band                                     |
| Rock Vane                |                           |                                                                          | becce                                    |
| J Hook Roo               | k Vane · · · · ·          | •••••                                                                    | Carrag                                   |
| Double Log               | g Drop                    |                                                                          | <                                        |
| Rock Step                | Pool                      |                                                                          | a la |
| Constructed              | l Riffle                  |                                                                          |                                          |
| Root Wad -               |                           |                                                                          | ATTRACTOR OF                             |
| Structure N              | lumber                    |                                                                          | $\langle   \rangle$                      |
| Large Spec               | imen Trees                |                                                                          | $\sum$                                   |
| STREAM FE                | ATURES:                   |                                                                          |                                          |
| Bankfull                 | ••••••                    |                                                                          |                                          |
|                          | • • • • • • • • • • • • • |                                                                          |                                          |
| Proposed T               | halweg · · · · ·          |                                                                          |                                          |
| Culvert Pipe             | )                         |                                                                          |                                          |
|                          |                           | L FEATURES:                                                              |                                          |
|                          | At Grade Stream           | -                                                                        | P                                        |
|                          | Construction Ent          |                                                                          |                                          |
|                          | • • • • • • • • • •       |                                                                          | <b>a .</b>                               |
|                          | a                         |                                                                          |                                          |
|                          | Dike                      |                                                                          | $\blacksquare$                           |
| Permanent                | Improved Gravel           | Road                                                                     | 5                                        |
| Temporary                | Gravel Road               |                                                                          |                                          |
| Stone Outle              | et Sediment Trap          |                                                                          | <b>S</b>                                 |
| Impervious               | Stream Channe             | l Plug                                                                   |                                          |
| Fill Existing            | Stream Channe             |                                                                          |                                          |
| Natural Roc              | k Energy Dissipa          | tor Basin Pad-                                                           |                                          |
|                          | NG ZONES:                 |                                                                          |                                          |
| Stream Ba                | n <b>ks</b> • • • • • • • |                                                                          |                                          |
| Riparian Bu              | ffer                      |                                                                          |                                          |
| Oxbow We                 | tland • • • • • • •       |                                                                          |                                          |
|                          |                           |                                                                          |                                          |
|                          |                           |                                                                          | L                                        |

## **GENERAL NOTES**


|            |                 |           | REVISIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PHOJECI ENGINEER    | PRUJECT REFERENCE NU. SHELL NU.           | l        |
|------------|-----------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------|----------|
|            | DATE<br>1/31/07 | BY<br>JTL | DESCRIPTION<br>ISSUED FOR PERMITTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 F                 | LITTLE WHITE OAK CREEK 2                  |          |
|            |                 | +         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DO NOT USE          | GENERAL NOTES                             |          |
|            |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FOR CONSTRUCTION    |                                           |          |
|            |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                           |          |
|            |                 | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | TIVILLANGINEERS & CONSULTANTS             |          |
|            | L               |           | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                   | PO Box 33127                              | l        |
|            |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | RALEIGH, N.C. 27636<br>(919) 851-1912     | Ĺ        |
|            |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | (919) 851-1918 (FAX)<br>WWW.MULKEYINC.COM |          |
|            |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L.                  |                                           |          |
|            |                 |           | nd where feasible, whe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                           |          |
|            |                 |           | g is required, use the fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                                           |          |
|            |                 |           | pile as specified on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                           |          |
|            |                 |           | site for rootwads, foote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                           |          |
|            |                 |           | pile as specified on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                           |          |
| 11 2       | uiu ui          | spos      | se of or stockpile as spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cified of the       |                                           |          |
| Pa         | c cher          | rifie     | d on the plans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                           |          |
|            |                 |           | ired and stockpile as sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | easified on the     |                                           |          |
| 11a        | 15 43 1         | rcqu      | incu and stockprie as sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eemed on the        |                                           |          |
|            |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                           |          |
| /itł       | in th           | e nro     | oposed limits of constru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | uction to be        |                                           |          |
|            |                 |           | tions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                           |          |
|            | speer           | пса       | 1013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                           |          |
| pl         | ant he          | eddia     | ng area on site for temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | orary storage of    |                                           |          |
|            |                 |           | ot watered, mulched and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                           |          |
|            | cifica          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a shuada ar an      |                                           |          |
|            |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                           |          |
| of         | adequ           | uate      | size to provide safe and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d organized         |                                           |          |
|            |                 |           | d for in-stream structur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                           |          |
|            |                 |           | for vegetation transpla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                           |          |
|            |                 |           | ls and equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                   |                                           |          |
|            |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                           |          |
| ark        | all v           | ehic      | les within the limits of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the designated      |                                           |          |
|            |                 |           | ction equipment and ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                           | ĺ        |
|            |                 |           | when not in use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                           |          |
|            |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                           |          |
| rep        | airs t          | o an      | y damage to existing u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tilities, including |                                           |          |
| un         | dergr           | ounc      | d utilities, curb and gutt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ter, pavement,      |                                           |          |
| ns,        | sanit           | ary s     | sewer systems, access r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oads, or fencing.   |                                           |          |
| in         | accor           | dan       | ce with any and all app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | licable state and   |                                           | ĺ        |
|            |                 |           | ctor shall consult with t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                                           |          |
| -6         | 32-49           | 49,       | and the NC ONE Call (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Center at least 48  |                                           |          |
| IW         | ork ac          | tivi      | ties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                           | ŀ        |
|            |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                           |          |
| sto        | ckpil           | ed o      | on site separately from c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | other soil          |                                           |          |
|            |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                           | ĺ        |
|            | <u>.</u>        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>A A B A</b>      |                                           | Ĺ        |
| ieu        | of J-           | hool      | k vanes at the direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of the Designer.    |                                           |          |
|            | ,               |           | 31 .3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                           |          |
|            |                 |           | ollow the contract docu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                           |          |
| ga         | ius to          | peu       | lestrian and bystander s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | alety.              |                                           |          |
| d o        | n cite          | in a      | active agricultural areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on the properties   |                                           |          |
|            |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                           |          |
|            |                 |           | rust at the direction of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                           |          |
|            |                 |           | stabilized using seeding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                           |          |
|            |                 |           | Is are disposed of off si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                                           |          |
|            |                 |           | disposal of such soil m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                           |          |
|            |                 |           | implementing an erosio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | and the second states                     |          |
|            |                 |           | y other required permited bermited bermited by the second s | (5), 101 life       | IN BITH CARO                              |          |
| an         | 11415           | are       | uisposeu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | State SS/000 FSS/000 FS                   |          |
| rdi        | natio           | σwi       | ith the land owner throu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ighout all phases   | a portant                                 | ľ        |
|            |                 |           | containment of livestor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | FILL TEN                                  | ĺ        |
|            |                 |           | ner as necessary to insu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | VE SEAL                                   |          |
|            |                 |           | of all work areas, that li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                           | ç        |
|            |                 |           | ruction activities, that li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | a china a china                           | \$ 11.45 |
|            |                 |           | that livestock are exclu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | a good GINETTO                            | ĺ        |
|            |                 |           | nd that construction act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | THE SCOTT HANN                            |          |
|            |                 |           | or the associated mover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | "IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    |          |
| <i>,</i> . | . 2010          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                           | ĺ        |
|            |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                           | 9-<br>14 |
|            |                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                           | 1 v I    |

- 1. This plan is based on the principles of natural channel design.
- Proposed constructed stream features and structures shown on these plans are shown in their approximate location and shall be field located and dimensioned to insure proper channel dimension.
- 3. All elevations shown on these plans are referenced to NAVD 88.
- 4. The location of all equipment and material staging areas, haul roads and access points to be located as noted on these plans. Limits of tree protection fencing, silt fencing, construction staging areas and construction access roads shown approximate on plans. Limits and locations to be coordinated with the Designer.
- Rock will be staged in construction staging areas upon delivery. Existing rock will also be utilized in formation of structures where feasible.
- Construction activities shall progress downstream, unless otherwise noted on these plans or as directed by the Designer.
- Equipment will remain outside of channel when feasible during construction. Instream work is anticipated for successful placement of structures and channel excavation.
- 8. All mechanized equipment operated in or near the stream or its tributaries shall be inspected regularly and maintained to prevent contamination of stream waters from fuels, lubricants, hydraulic fluids or other toxic materials. Any equipment repairs, maintenance or refueling activities shall not be done while the equipment is in the stream or its tributaries.
- 9. Contractor to dispose of all waste material offsite in accordance with all federal, state and local regulations.
- 10. All appropriately sized on-site trees removed during the stream restoration construction to be used on-site as rootwads, footer logs, etc., where feasible and as directed by the Designer.
- All rootwads shall be installed by driving or pushing them into the streambank, when driving is not feasible, installation through excavation may be acceptable if directed by the Designer.
- 12. All disturbed areas to be seeded immediately as specified in the project specifications.
- 13. Apply temporary and permanent seed and erosion control fiber matting to bankfull bench and cut banks daily as excavation progresses. Erosion control fiber matting will be keyed into the top of slope and at the ends of each mat to prevent undercutting from sheet flow. Additional silt fencing will be installed as directed by the Designer.
- 14. Unless otherwise directed by the Designer or noted on these plans, a 50-foot minimum width permanently vegetated buffer shall be planted.

÷

15. Use rootwads, topsoil and transplant vegetation generated on-site for the proposed stream construction as close as possible to the existing location from where these items are removed in order to minimize hauling distance and storage duration.

- 16. Unless otherwise directed by the Designer, ar construction on a given reach, where clearing
- A. Remove transplant vegetation and stockpi
- B. Remove larger trees that can be used on-si or floodplain habitat structures and stockp
- C. Remove remaining vegetation and dispose plans.
- D. Remove topsoil and stockpile as specified
- E. Remove remaining soil materials as require
  - plans.
- Existing non-native vegetation within the propremoved as specified in the project specificati
- Contractor to provide temporary plant bedding vegetation transplants. Transplants to be kept times as specified in the project specifications
- 19. Construction staging areas to be of adequate si storage for rock, rootwads and logs to be used and other soil material, temporary plant beds for well as all other related construction materials
- 20. Construction personnel should park all vehicle construction staging areas. All other construct parked within the construction staging areas w
- 21. Contractor to be responsible for repairs to any but not limited to, overhead and underground sidewalks, storm drainage systems, sanitary se Any required repairs to be made in accordance or local municipality standards. The Contract You Dig" Toll Free Number 800-632-4949, ar hour prior to beginning any earthwork activitie
- 22. Contractor shall keep all topsoil stockpiled on materials.
- 23. Rock vanes may be installed in lieu of j-hook
- 24. Contractor is advised to use caution and to follo all applicable regulations with regards to pedes
- 25. Excess soil materials to be spread on site in act owned and operated by the Walker Family Tru the said property owners. Spread soil to be sta specifications. If any excavated soil materials Contractor, the Contractor is responsible for di permitted area, as well as for providing and im sedimentation control plan and permit, or any o location(s) off site where such materials are dis
- 26. Contractor is responsible for coordinating with of construction regarding the movement and co Contractor shall coordinate with the land owne livestock are safely and securely moved out of escape from the property as a result of construct harmed as a result of construction activities, the from the active and completed work areas, and hindered, delayed, or damaged by livestock or containment of livestock.



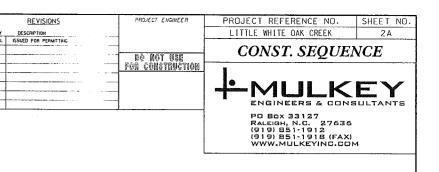
#### PHASE 1

- LIVESTOCK MOVEMENT, MOBILIZATION, AND ESTABLISHMENT OF GENERAL EROSION CONTROL MEASURES
- 1. Coordinate and complete all necessary livestock movement, exclusion, and containment activities with the landowner.
- 2. Identify and locate staging areas, stockpile areas, construction entrances, stream crossings required for construction access, limits of silt fencing, limits of tree protection fencing, and construction access roads as shown on plans.
- 2. Install construction entrances.
- 3. Install stream crossings required for construction access.
- 4. Stockpile materials in designated staging areas.
- 5. Install silt fencing to the limits shown on the plans and at any other locations as directed by the Designer. Silt fencing will be installed around the limits of all staging and stockpile areas.
- 6. Install tree protection fencing as shown on the plans and at all other locations as directed by the Designer. Flag all vegetation to be transplanted.
- NOTE: With approval from the Designer, the Contractor may complete Phases 2 through 13 out of sequence, dependant upon weather and/or site conditions. Regardless of the sequencing of the phases, each phase will be completed prior to beginning work on another phase.

#### PHASE 2

#### REACH R1 FROM BEGINNING OF PROJECT TO CONFLUENCE WITH REACH R1A

1. Designer will perform construction staking.


+

- 2. Begin pump-around operation at upstream end of reach. Install an impervious dike at upstream and downstream ends of the proposed limit of the area of active construction in order to isolate all work from stream flow. Pump-around operation should be conducted in accordance with the typical pump-around operation detail as shown on the plans. Turbid water between impervious dikes must be pumped with a separate pump into sediment bags to be discharged downstream of the impervious dikes in accordance with the typical pumparound operation detail as shown on the plans. After the pump-around operation is properly initiated, proceed with construction in the sequence noted below:
  - Remove all vegetation transplants, including individual specimens and vegetated a. mats), stockpile and maintain in accordance with the project specifications.
  - Remove any appropriate trees to be used as rootwads, header logs, footer logs, or h logs sills and stockpile in accordance with the project specifications.
  - Perform required clearing and grubbing.

- Segregate and stockpile topsoil and other soil material in accordance with the d. project specifications.
- Beginning at the upstream end of the area of active construction, proceed in the e. downstream direction with construction of the proposed stream channel. excavating and shaping the channel and installing the required in-stream structures as specified on the plans.
- f. Perform all topsoil replacement, vegetation transplanting, seeding (temporary and permanent), soil amendment, mulching, and installation of all erosion control matting as specified on the plans and the project specifications. Stream banks will have permanent and temporary seed, soil amendments, mulch, and erosion control matting applied to them as work progresses and by the end of each day. Erosion control matting will be installed on top of the seeded, amended, and mulched stream banks according to the project specifications.
- For sections of proposed channel on new alignment, leave the reach of proposed channel on new alignment disconnected (at its upstream end) from the existing active stream channel until construction of the proposed reach of channel on new alignment is completed. Leave such sections of proposed channel disconnected as described as long as possible in order to facilitate the establishment and growth of vegetation prior to activation of the new channel.
- h. For sections of proposed channel on new alignment, connect existing channel to the newly constructed channel at its upstream end. Immediately construct the impervious stream channel plug at the upstream end of the reach of existing channel to be abandoned. Haul other soil material produced during construction of this reach back to the abandoned stream reach and use it to begin filling the abandoned channel.
- i. Complete all work within the limit of the given pump-around operation before beginning additional work at other locations. After completing all work within the limit of the current pump-around operation, proceed with the next downstream segment of construction.
- į. Relocate pump-around operation to next location downstream. Leave impervious dike that was located at the downstream end of the previous pump-around operation in place to serve as the impervious dike at the upstream end of the new pump-around operation. Install an impervious dike at the downstream end of the new pump-around operation. After the new pump-around operation is properly initiated, repeat steps a. through i. along the entire reach until the construction of the reach is completed.
- 3. Remove and dispose of all unused vegetation materials.
- 4. All excavated soil materials not utilized will be stockpiled and maintained according to the project specifications. After the completion of construction, all unused soil materials shall be spread on site in active agricultural areas on the properties owned and operated by the Walker Family Trust at the direction of the Designer and the said property owners. Spread soil to be stabilized using seeding per the project specifications.
- 5. All remaining disturbed areas are to be amended, seeded, matted and/or mulched according to the project specifications.

#### REACH R1A

| a. | Ren  |
|----|------|
|    | mat  |
| b. | Ren  |
|    | logs |
| с. | Per  |
| d. | Seg  |
|    | proj |
| e. | Beg  |
|    | dow  |
|    | exc  |
|    | stru |
| f. | Peri |
|    | peri |
|    | mat  |
|    | will |
|    | con  |
|    | Ero  |
|    | mul  |
| g. | For  |
|    | cha  |
|    | acti |
|    | alig |
|    | as o |
|    | grov |
| h. | For  |
|    | the  |
|    | imp  |
|    | char |



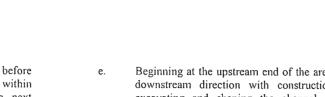
#### PHASE 3

1. Designer will perform construction staking.

2. Begin pump-around operation at upstream end of reach. Install an impervious dike at upstream and downstream ends of the proposed limit of the area of active construction in order to isolate all work from stream flow. Pump-around operation should be conducted in accordance with the typical pump-around operation detail as shown on the plans. Turbid water between impervious dikes must be pumped with a separate pump into sediment bags to be discharged downstream of the impervious dikes in accordance with the typical pumparound operation detail as shown on the plans. After the pump-around operation is properly initiated, proceed with construction in the sequence noted below:

> move all vegetation transplants, including individual specimens and vegetated ts), stockpile and maintain in accordance with the project specifications.

> move any appropriate trees to be used as rootwads, header logs, footer logs, or s sills and stockpile in accordance with the project specifications.


form required clearing and grubbing.

regate and stockpile topsoil and other soil material in accordance with the ject specifications.

ginning at the upstream end of the area of active construction, proceed in the vnstream direction with construction of the proposed stream channel, avating and shaping the channel and installing the required in-stream ctures as specified on the plans.

form all topsoil replacement, vegetation transplanting, seeding (temporary and manent), soil amendment, mulching, and installation of all erosion control tting as specified on the plans and the project specifications. Stream banks have permanent and temporary seed, soil amendments, mulch, and erosion trol matting applied to them as work progresses and by the end of each day. sion control matting will be installed on top of the seeded, amended, and lched stream banks according to the project specifications.

sections of proposed channel on new alignment, leave the reach of proposed nnel on new alignment disconnected (at its upstream end) from the existing ve stream channel until construction of the proposed reach of channel on new ment is completed. Leave such sections of proposed channel disconnected described as long as possible in order to facilitate the establishment and wth of vegetation prior to activation of the new channel.



- Complete all work within the limit of the given pump-around operation before beginning additional work at other locations. After completing all work within the limit of the current pump-around operation, proceed with the next downstream segment of construction.
- Relocate pump-around operation to next location downstream. Leave impervious dike that was located at the downstream end of the previous pump-around operation in place to serve as the impervious dike at the upstream end of the new pump-around operation. Install an impervious dike at the downstream end of the new pump-around operation. After the new pump-around operation is properly initiated, repeat steps a. through i. along the entire reach until the construction of the reach is completed.
- 3. Remove and dispose of all unused vegetation materials.
- 4. All excavated soil materials not utilized will be stockpiled and maintained according to the project specifications. After the completion of construction, all unused soil materials shall be spread on site in active agricultural areas on the properties owned and operated by the Walker Family Trust at the direction of the Designer and the said property owners. Spread soil to be stabilized using seeding per the project specifications.
- 5. All remaining disturbed areas are to be amended, seeded, matted and/or mulched according to the project specifications.

#### PHASE 4

REACH R1 FROM CONFLUENCE WITH REACH R1A TO NC HIGHWAY 9 BRIDGE

1. Designer will perform construction staking.

÷.+

- 2. Begin pump-around operation at upstream end of reach. Install an impervious dike at upstream and downstream ends of the proposed limit of the area of active construction in order to isolate all work from stream flow. Pump-around operation should be conducted in accordance with the typical pump-around operation detail as shown on the plans. Turbid water between impervious dikes must be pumped with a separate pump into sediment bags to be discharged downstream of the impervious dikes in accordance with the typical pumparound operation detail as shown on the plans. After the pump-around operation is properly initiated, proceed with construction in the sequence noted below:
  - Remove all vegetation transplants, including individual specimens and vegetated a. mats), stockpile and maintain in accordance with the project specifications.
  - b. Remove any appropriate trees to be used as rootwads, header logs, footer logs, or logs sills and stockpile in accordance with the project specifications.
  - Perform required clearing and grubbing.
  - d Segregate and stockpile topsoil and other soil material in accordance with the project specifications.

- Beginning at the upstream end of the area of active construction, proceed in t downstream direction with construction of the proposed stream channel. excavating and shaping the channel and installing the required in-stream structures as specified on the plans.
- Perform all topsoil replacement, vegetation transplanting, seeding (temporary and f permanent), soil amendment, mulching, and installation of all erosion control matting as specified on the plans and the project specifications. Stream banks will have permanent and temporary seed, soil amendments, mulch, and erosion control matting applied to them as work progresses and by the end of each day. Erosion control matting will be installed on top of the seeded. amended, and mulched stream banks according to the project specifications.
- For sections of proposed channel on new alignment, leave the reach of proposed g. channel on new alignment disconnected (at its upstream end) from the existing active stream channel until construction of the proposed reach of channel on new alignment is completed. Leave such sections of proposed channel disconnected as described as long as possible in order to facilitate the establishment and growth of vegetation prior to activation of the new channel.
- For sections of proposed channel on new alignment, connect existing channel to h the newly constructed channel at its upstream end. Immediately construct the impervious stream channel plug at the upstream end of the reach of existing channel to be abandoned. Haul other soil material produced during construction of this reach back to the abandoned stream reach and use it to begin filling the abandoned channel.
- Complete all work within the limit of the given pump-around operation before beginning additional work at other locations. After completing all work within the limit of the current pump-around operation, proceed with the next downstream segment of construction.
- Relocate pump-around operation to next location downstream. Leave impervious dike that was located at the downstream end of the previous pump-around operation in place to serve as the impervious dike at the upstream end of the new pump-around operation. Install an impervious dike at the downstream end of the new pump-around operation. After the new pump-around operation is properly initiated, repeat steps a. through i. along the entire reach until the construction of the reach is completed.

#### 3. Remove and dispose of all unused vegetation materials.

- 4. All excavated soil materials not utilized will be stockpiled and maintained according to the project specifications. After the completion of construction, all unused soil materials shall be spread on site in active agricultural areas on the properties owned and operated by the Walker Family Trust at the direction of the Designer and the said property owners. Spread soil to be stabilized using seeding per the project specifications.
- 5. All remaining disturbed areas are to be amended, seeded, matted and/or mulched according to the project specifications.

а

h с. d. e.

g.

h.

| RE VISIONS                         | ···· ··· ENGINEER | PROJECT REFERENCE NO.  | SHEET NO. |
|------------------------------------|-------------------|------------------------|-----------|
| DESCRIPTION<br>SUED FOR PERMITTING |                   | LITTLE WHITE OAK CREEK | 2B        |
|                                    | at net use        | CONST. SEQUE           | NCE       |
|                                    | <u> </u>          | -<br>⊢MULK             | ΕY        |
|                                    |                   | ENGINEERS & CON        |           |

#### PHASE 5

#### REACH R1 FROM NC HIGHWAY 9 BRIDGE TO CONFLUENCE WITH REACH R2

1. Designer will perform construction staking.

2. Begin pump-around operation at upstream end of reach. Install an impervious dike at upstream and downstream ends of the proposed limit of the area of active construction in order to isolate all work from stream flow. Pump-around operation should be conducted in accordance with the typical pump-around operation detail as shown on the plans. Turbid water between impervious dikes must be pumped with a separate pump into sediment bags to be discharged downstream of the impervious dikes in accordance with the typical pumparound operation detail as shown on the plans. After the pump-around operation is properly initiated, proceed with construction in the sequence noted below:

> Remove all vegetation transplants, including individual specimens and vegetated mats), stockpile and maintain in accordance with the project specifications.

> Remove any appropriate trees to be used as rootwads, header logs, footer logs, or logs sills and stockpile in accordance with the project specifications.

Perform required clearing and grubbing.

Segregate and stockpile topsoil and other soil material in accordance with the project specifications.

Beginning at the upstream end of the area of active construction, proceed in the downstream direction with construction of the proposed stream channel, excavating and shaping the channel and installing the required in-stream structures as specified on the plans.

Perform all topsoil replacement, vegetation transplanting, seeding (temporary and permanent), soil amendment, mulching, and installation of all erosion control matting as specified on the plans and the project specifications. Stream banks will have permanent and temporary seed, soil amendments, mulch, and erosion control matting applied to them as work progresses and by the end of each day. Erosion control matting will be installed on top of the seeded, amended, and mulched stream banks according to the project specifications.

For sections of proposed channel on new alignment, leave the reach of proposed channel on new alignment disconnected (at its upstream end) from the existing active stream channel until construction of the proposed reach of channel on new alignment is completed. Leave such sections of proposed channel disconnected as described as long as possible in order to facilitate the establishment and growth of vegetation prior to activation of the new channel.



i Complete all work within the limit of the given pump-around operation before beginning additional work at other locations. After completing all work within the limit of the current pump-around operation, proceed with the next downstream segment of construction.

Relocate pump-around operation to next location downstream. Leave impervious į. dike that was located at the downstream end of the previous pump-around operation in place to serve as the impervious dike at the upstream end of the new pump-around operation. Install an impervious dike at the downstream end of the new pump-around operation. After the new pump-around operation is properly initiated, repeat steps a. through i. along the entire reach until the construction of the reach is completed.

3. Remove and dispose of all unused vegetation materials.

4. All excavated soil materials not utilized will be stockpiled and maintained according to the project specifications. After the completion of construction, all unused soil materials shall be spread on site in active agricultural areas on the properties owned and operated by the Walker Family Trust at the direction of the Designer and the said property owners. Spread soil to be stabilized using seeding per the project specifications.

5. All remaining disturbed areas are to be amended, seeded, matted and/or mulched according to the project specifications.

#### PHASE 6

REACH R2 FROM BEGINNING OF PROJECT TO CONFLUENCE WITH REACH R2A

1. Designer will perform construction staking.

- 2. Begin pump-around operation at upstream end of reach. Install an impervious dike at upstream and downstream ends of the proposed limit of the area of active construction in order to isolate all work from stream flow. Pump-around operation should be conducted in accordance with the typical pump-around operation detail as shown on the plans. Turbid water between impervious dikes must be pumped with a separate pump into sediment bags to be discharged downstream of the impervious dikes in accordance with the typical pumparound operation detail as shown on the plans. After the pump-around operation is properly initiated, proceed with construction in the sequence noted below:
  - Remove all vegetation transplants, including individual specimens and vegetated a. mats), stockpile and maintain in accordance with the project specifications.
  - Remove any appropriate trees to be used as rootwads, header logs, footer logs, or h logs sills and stockpile in accordance with the project specifications.
  - Perform required clearing and grubbing. c.
  - đ Segregate and stockpile topsoil and other soil material in accordance with the project specifications.
  - Beginning at the upstream end of the area of active construction, proceed in the e. downstream direction with construction of the proposed stream channel, excavating and shaping the channel and installing the required in-stream structures as specified on the plans.

- Perform all topsoil replacement, vegetation transplanting, seeding (temporary and f permanent), soil amendment, mulching, and installation of all erosion control matting as specified on the plans and the project specifications. Stream banks will have permanent and temporary seed, soil amendments, mulch, and erosion control matting applied to them as work progresses and by the end of each day. Erosion control matting will be installed on top of the seeded, amended, and mulched stream banks according to the project specifications.
- For sections of proposed channel on new alignment, leave the reach of proposed g. channel on new alignment disconnected (at its upstream end) from the existing active stream channel until construction of the proposed reach of channel on new alignment is completed. Leave such sections of proposed channel disconnected as described as long as possible in order to facilitate the establishment and growth of vegetation prior to activation of the new channel.
- h For sections of proposed channel on new alignment, connect existing channel to the newly constructed channel at its upstream end. Immediately construct the impervious stream channel plug at the upstream end of the reach of existing channel to be abandoned. Haul other soil material produced during construction of this reach back to the abandoned stream reach and use it to begin filling the abandoned channel.
- Complete all work within the limit of the given pump-around operation before beginning additional work at other locations. After completing all work within the limit of the current pump-around operation, proceed with the next downstream segment of construction.
- Relocate pump-around operation to next location downstream. Leave impervious dike that was located at the downstream end of the previous pump-around operation in place to serve as the impervious dike at the upstream end of the new pump-around operation. Install an impervious dike at the downstream end of the new pump-around operation. After the new pump-around operation is properly initiated, repeat steps a. through i. along the entire reach until the construction of the reach is completed.

3. Remove and dispose of all unused vegetation materials.

- 4. All excavated soil materials not utilized will be stockpiled and maintained according to the project specifications. After the completion of construction, all unused soil materials shall be spread on site in active agricultural areas on the properties owned and operated by the Walker Family Trust at the direction of the Designer and the said property owners. Spread soil to be stabilized using seeding per the project specifications.
- 5. All remaining disturbed areas are to be amended, seeded, matted and/or mulched according to the project specifications.

REACH R2A

ANNORTH CARO

a.

| μ. | mat                                              |
|----|--------------------------------------------------|
| b. | Ren<br>logs                                      |
| c. | Perf                                             |
| d. | Seg<br>proj                                      |
| e. | Beg<br>dow<br>exca<br>stru                       |
| f. | Perf<br>per<br>mat<br>will<br>com<br>Eros<br>mul |
| g. | For<br>char<br>acti-<br>alig<br>as o             |

h.

CONTINUED ON PAGE 2D

| REVISIONS<br>DESCRIPTION | PROJECT ENGINEER               | PROJECT REFERENCE NO. SHEET I<br>LITTLE WHITE OAK CREEK 2C |    |  |  |  |  |  |  |  |  |
|--------------------------|--------------------------------|------------------------------------------------------------|----|--|--|--|--|--|--|--|--|
| SSUED FOR PERMITTING     | DO NOT USE<br>For construction | CONST. SEQUENCE                                            |    |  |  |  |  |  |  |  |  |
|                          |                                | +-MULK                                                     | EV |  |  |  |  |  |  |  |  |
|                          |                                |                                                            |    |  |  |  |  |  |  |  |  |

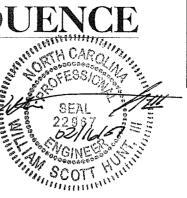
#### PHASE 7

1. Designer will perform construction staking.

2. Begin pump-around operation at upstream end of reach. Install an impervious dike at upstream and downstream ends of the proposed limit of the area of active construction in order to isolate all work from stream flow. Pump-around operation should be conducted in accordance with the typical pump-around operation detail as shown on the plans. Turbid water between impervious dikes must be pumped with a separate pump into sediment bags to be discharged downstream of the impervious dikes in accordance with the typical pumparound operation detail as shown on the plans. After the pump-around operation is properly initiated, proceed with construction in the sequence noted below:

> Remove all vegetation transplants, including individual specimens and vegetated s), stockpile and maintain in accordance with the project specifications.

nove any appropriate trees to be used as rootwads, header logs, footer logs, or sills and stockpile in accordance with the project specifications.


form required clearing and grubbing.

regate and stockpile topsoil and other soil material in accordance with the ect specifications.

ginning at the upstream end of the area of active construction, proceed in the wnstream direction with construction of the proposed stream channel, avating and shaping the channel and installing the required in-stream uctures as specified on the plans.

form all topsoil replacement, vegetation transplanting, seeding (temporary and manent), soil amendment, mulching, and installation of all erosion control ting as specified on the plans and the project specifications. Stream banks have permanent and temporary seed, soil amendments, mulch, and erosion trol matting applied to them as work progresses and by the end of each day. osion control matting will be installed on top of the seeded, amended, and Iched stream banks according to the project specifications.

sections of proposed channel on new alignment, leave the reach of proposed annel on new alignment disconnected (at its upstream end) from the existing ive stream channel until construction of the proposed reach of channel on new mment is completed. Leave such sections of proposed channel disconnected described as long as possible in order to facilitate the establishment and growth of vegetation prior to activation of the new channel.



- Complete all work within the limit of the given pump-around operation before beginning additional work at other locations. After completing all work within the limit of the current pump-around operation, proceed with the next downstream segment of construction.
- Relocate pump-around operation to next location downstream. Leave impervious dike that was located at the downstream end of the previous pump-around operation in place to serve as the impervious dike at the upstream end of the new pump-around operation. Install an impervious dike at the downstream end of the new pump-around operation. After the new pump-around operation is properly initiated, repeat steps a. through i. along the entire reach until the construction of the reach is completed.
- 3. Remove and dispose of all unused vegetation materials.

÷

÷.

- 4. All excavated soil materials not utilized will be stockpiled and maintained according to the project specifications. After the completion of construction, all unused soil materials shall be spread on site in active agricultural areas on the properties owned and operated by the Walker Family Trust at the direction of the Designer and the said property owners. Spread soil to be stabilized using seeding per the project specifications.
- 5. All remaining disturbed areas are to be amended, seeded, matted and/or mulched according to the project specifications.

#### PHASE 8

- REACH R2 FROM CONFLUENCE WITH REACH R2A TO CONFLUENCE WITH REACH R2B
- 1. Designer will perform construction staking.
- 2. Begin pump-around operation at upstream end of reach. Install an impervious dike at upstream and downstream ends of the proposed limit of the area of active construction in order to isolate all work from stream flow. Pump-around operation should be conducted in accordance with the typical pump-around operation detail as shown on the plans. Turbid water between impervious dikes must be pumped with a separate pump into sediment bags to be discharged downstream of the impervious dikes in accordance with the typical pumparound operation detail as shown on the plans. After the pump-around operation is properly initiated, proceed with construction in the sequence noted below:
  - Remove all vegetation transplants, including individual specimens and vegetated a. mats), stockpile and maintain in accordance with the project specifications.
  - b. Remove any appropriate trees to be used as rootwads, header logs, footer logs, or logs sills and stockpile in accordance with the project specifications.
  - Perform required clearing and grubbing. c.
  - d. Segregate and stockpile topsoil and other soil material in accordance with the project specifications.

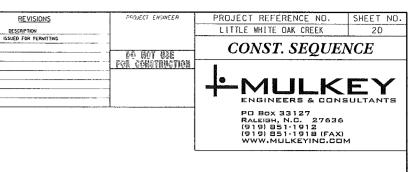
Beginning at the upstream end of the area of active construction, proceed in the downstream direction with construction of the proposed stream channel, excavating and shaping the channel and installing the required in-stream structures as specified on the plans.

#### f. Perform all topsoil replacement, vegetation transplanting, seeding (temporary and permanent), soil amendment, mulching, and installation of all erosion control matting as specified on the plans and the project specifications. Stream banks will have permanent and temporary seed, soil amendments, mulch, and erosion control matting applied to them as work progresses and by the end of each day. Erosion control matting will be installed on top of the seeded, amended, and mulched stream banks according to the project specifications.

- For sections of proposed channel on new alignment, leave the reach of proposed g. channel on new alignment disconnected (at its upstream end) from the existing active stream channel until construction of the proposed reach of channel on new alignment is completed. Leave such sections of proposed channel disconnected as described as long as possible in order to facilitate the establishment and growth of vegetation prior to activation of the new channel.
- h. For sections of proposed channel on new alignment, connect existing channel to the newly constructed channel at its upstream end. Immediately construct the impervious stream channel plug at the upstream end of the reach of existing channel to be abandoned. Haul other soil material produced during construction of this reach back to the abandoned stream reach and use it to begin filling the abandoned channel
- Complete all work within the limit of the given pump-around operation before beginning additional work at other locations. After completing all work within the limit of the current pump-around operation, proceed with the next downstream segment of construction.
- Relocate pump-around operation to next location downstream. Leave impervious dike that was located at the downstream end of the previous pump-around operation in place to serve as the impervious dike at the upstream end of the new pump-around operation. Install an impervious dike at the downstream end of the new pump-around operation. After the new pump-around operation is properly initiated, repeat steps a. through i. along the entire reach until the construction of the reach is completed.

#### 3. Remove and dispose of all unused vegetation materials.

- 4. All excavated soil materials not utilized will be stockpiled and maintained according to the project specifications. After the completion of construction, all unused soil materials shall be spread on site in active agricultural areas on the properties owned and operated by the Walker Family Trust at the direction of the Designer and the said property owners. Spread soil to be stabilized using seeding per the project specifications.
- 5. All remaining disturbed areas are to be amended, seeded, matted and/or mulched according to the project specifications.


## REACH R2B

a.

- b. c. d. e.
- f

g.

h



#### PHASE 9

1. Designer will perform construction staking.

2. Begin pump-around operation at upstream end of reach. Install an impervious dike at upstream and downstream ends of the proposed limit of the area of active construction in order to isolate all work from stream flow. Pump-around operation should be conducted in accordance with the typical pump-around operation detail as shown on the plans. Turbid water between impervious dikes must be pumped with a separate pump into sediment bags to be discharged downstream of the impervious dikes in accordance with the typical pumparound operation detail as shown on the plans. After the pump-around operation is properly initiated, proceed with construction in the sequence noted below:

> Remove all vegetation transplants, including individual specimens and vegetated mats), stockpile and maintain in accordance with the project specifications.

> Remove any appropriate trees to be used as rootwads, header logs, footer logs, or logs sills and stockpile in accordance with the project specifications.

Perform required clearing and grubbing.

Segregate and stockpile topsoil and other soil material in accordance with the project specifications.

Beginning at the upstream end of the area of active construction, proceed in the downstream direction with construction of the proposed stream channel, excavating and shaping the channel and installing the required in-stream structures as specified on the plans.

Perform all topsoil replacement, vegetation transplanting, seeding (temporary and permanent), soil amendment, mulching, and installation of all erosion control matting as specified on the plans and the project specifications. Stream banks will have permanent and temporary seed, soil amendments, mulch, and erosion control matting applied to them as work progresses and by the end of each day. Erosion control matting will be installed on top of the seeded, amended, and mulched stream banks according to the project specifications.

For sections of proposed channel on new alignment, leave the reach of proposed channel on new alignment disconnected (at its upstream end) from the existing active stream channel until construction of the proposed reach of channel on new alignment is completed. Leave such sections of proposed channel disconnected as described as long as possible in order to facilitate the establishment and growth of vegetation prior to activation of the new channel.



- Complete all work within the limit of the given pump-around operation before beginning additional work at other locations. After completing all work within the limit of the current pump-around operation, proceed with the next downstream segment of construction.
- Relocate pump-around operation to next location downstream. Leave impervious dike that was located at the downstream end of the previous pump-around operation in place to serve as the impervious dike at the unstream end of the new pump-around operation. Install an impervious dike at the downstream end of the new pump-around operation. After the new pump-around operation is properly initiated, repeat steps a. through i. along the entire reach until the construction of the reach is completed.
- 3. Remove and dispose of all unused vegetation materials.
- 4. All excavated soil materials not utilized will be stockpiled and maintained according to the project specifications. After the completion of construction, all unused soil materials shall be spread on site in active agricultural areas on the properties owned and operated by the Walker Family Trust at the direction of the Designer and the said property owners. Spread soil to be stabilized using seeding per the project specifications.
- 5. All remaining disturbed areas are to be amended, seeded, matted and/or mulched according to the project specifications.

#### PHASE 10

REACH R2 FROM CONFLUENCE WITH REACH R2B TO CONFLUENCE WITH REACH Rl

- 1. Designer will perform construction staking.
- 2. Begin pump-around operation at upstream end of reach. Install an impervious dike at upstream and downstream ends of the proposed limit of the area of active construction in order to isolate all work from stream flow. Pump-around operation should be conducted in accordance with the typical pump-around operation detail as shown on the plans. Turbid water between impervious dikes must be pumped with a separate pump into sediment bags to be discharged downstream of the impervious dikes in accordance with the typical pumparound operation detail as shown on the plans. After the pump-around operation is properly initiated, proceed with construction in the sequence noted below:
  - Remove all vegetation transplants, including individual specimens and vegetated a. mats), stockpile and maintain in accordance with the project specifications.
  - b. Remove any appropriate trees to be used as rootwads, header logs, footer logs, or logs sills and stockpile in accordance with the project specifications.
  - C. Perform required clearing and grubbing.
  - d. Segregate and stockpile topsoil and other soil material in accordance with the project specifications.

- Beginning at the upstream end of the area of active construction, proceed in the e downstream direction with construction of the proposed stream channel, excavating and shaping the channel and installing the required in-stream structures as specified on the plans.
- Perform all topsoil replacement, vegetation transplanting, seeding (temporary and permanent), soil amendment, mulching, and installation of all erosion control matting as specified on the plans and the project specifications. Stream banks will have permanent and temporary seed, soil amendments, mulch, and erosion control matting applied to them as work progresses and by the end of each day. Erosion control matting will be installed on top of the seeded, amended, and mulched stream banks according to the project specifications.
- g. For sections of proposed channel on new alignment, leave the reach of proposed channel on new alignment disconnected (at its upstream end) from the existing active stream channel until construction of the proposed reach of channel on new alignment is completed. Leave such sections of proposed channel disconnected as described as long as possible in order to facilitate the establishment and growth of vegetation prior to activation of the new channel.
- For sections of proposed channel on new alignment, connect existing channel to h. the newly constructed channel at its upstream end. Immediately construct the impervious stream channel plug at the upstream end of the reach of existing channel to be abandoned. Haul other soil material produced during construction of this reach back to the abandoned stream reach and use it to begin filling the abandoned channel.
- Complete all work within the limit of the given pump-around operation before beginning additional work at other locations. After completing all work within the limit of the current pump-around operation, proceed with the next downstream segment of construction.
- Relocate pump-around operation to next location downstream. Leave impervious dike that was located at the downstream end of the previous pump-around operation in place to serve as the impervious dike at the upstream end of the new pump-around operation. Install an impervious dike at the downstream end of the new pump-around operation. After the new pump-around operation is properly initiated, repeat steps a. through i. along the entire reach until the construction of the reach is completed.

#### 3. Remove and dispose of all unused vegetation materials.

- 4. All excavated soil materials not utilized will be stockpiled and maintained according to the project specifications. After the completion of construction, all unused soil materials shall be spread on site in active agricultural areas on the properties owned and operated by the Walker Family Trust at the direction of the Designer and the said property owners. Spread soil to be stabilized using seeding per the project specifications.
- 5. All remaining disturbed areas are to be amended, seeded, matted and/or mulched according to the project specifications.

- - b. c. d.
  - f
  - g,

| REVISIONS<br>DESCRIPTION | PROJECT ENGINEER               | PROJECT REFERENCE NO.<br>LITTLE WHITE OAK CREEK                                                    | SHEET NO.<br>2E |  |  |  |  |  |  |  |  |
|--------------------------|--------------------------------|----------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|--|--|
| SUED FOR PERMITTING      | DO NOT USE<br>FOR CONSTRUCTION | CONST. SEQUENCE                                                                                    |                 |  |  |  |  |  |  |  |  |
|                          | <u>run eynsthwettun</u>        |                                                                                                    |                 |  |  |  |  |  |  |  |  |
|                          |                                | PO Box 33127<br>Raleigh, N.C. 27636<br>(919) 851-1912<br>(919) 851-1918 (FAX)<br>WWW.MULKEYINC.COM | 4               |  |  |  |  |  |  |  |  |
|                          |                                |                                                                                                    |                 |  |  |  |  |  |  |  |  |

#### PHASE 11

#### REACH R2 FROM CONFLUENCE WITH REACH R1 TO SR 1324 BRIDGE

1. Designer will perform construction staking.

2. Begin pump-around operation at upstream end of reach. Install an impervious dike at upstream and downstream ends of the proposed limit of the area of active construction in order to isolate all work from stream flow. Pump-around operation should be conducted in accordance with the typical pump-around operation detail as shown on the plans. Turbid water between impervious dikes must be pumped with a separate pump into sediment bags to be discharged downstream of the impervious dikes in accordance with the typical pumparound operation detail as shown on the plans. After the pump-around operation is properly initiated, proceed with construction in the sequence noted below:

> Remove all vegetation transplants, including individual specimens and vegetated mats), stockpile and maintain in accordance with the project specifications.

> Remove any appropriate trees to be used as rootwads, header logs, footer logs, or logs sills and stockpile in accordance with the project specifications.


Perform required clearing and grubbing.

Segregate and stockpile topsoil and other soil material in accordance with the project specifications.

Beginning at the upstream end of the area of active construction, proceed in the downstream direction with construction of the proposed stream channel, excavating and shaping the channel and installing the required in-stream structures as specified on the plans.

Perform all topsoil replacement, vegetation transplanting, seeding (temporary and permanent), soil amendment, mulching, and installation of all erosion control matting as specified on the plans and the project specifications. Stream banks will have permanent and temporary seed, soil amendments, mulch, and erosion control matting applied to them as work progresses and by the end of each day. Erosion control matting will be installed on top of the seeded, amended, and mulched stream banks according to the project specifications.

For sections of proposed channel on new alignment, leave the reach of proposed channel on new alignment disconnected (at its upstream end) from the existing active stream channel until construction of the proposed reach of channel on new alignment is completed. Leave such sections of proposed channel disconnected as described as long as possible in order to facilitate the establishment and growth of vegetation prior to activation of the new channel.

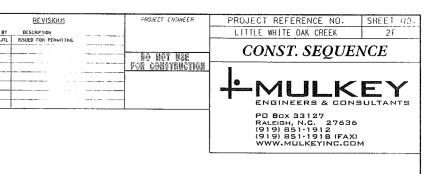


- Complete all work within the limit of the given pump-around operation before i beginning additional work at other locations. After completing all work within the limit of the current pump-around operation, proceed with the next downstream segment of construction.
- Relocate pump-around operation to next location downstream. Leave impervious dike that was located at the downstream end of the previous pump-around operation in place to serve as the impervious dike at the upstream end of the new pump-around operation. Install an impervious dike at the downstream end of the new pump-around operation. After the new pump-around operation is properly initiated, repeat steps a. through i. along the entire reach until the construction of the reach is completed.
- 3. Remove and dispose of all unused vegetation materials.
- 4. All excavated soil materials not utilized will be stockpiled and maintained according to the project specifications. After the completion of construction, all unused soil materials shall be spread on site in active agricultural areas on the properties owned and operated by the Walker Family Trust at the direction of the Designer and the said property owners. Spread soil to be stabilized using seeding per the project specifications.
- 5. All remaining disturbed areas are to be amended, seeded, matted and/or mulched according to the project specifications.

#### PHASE 12

#### REACH R2 FROM SR 1324 BRIDGE TO CONFLUENCE WITH REACH R2D

- 1. Designer will perform construction staking.
- 2. Begin pump-around operation at upstream end of reach. Install an impervious dike at upstream and downstream ends of the proposed limit of the area of active construction in order to isolate all work from stream flow. Pump-around operation should be conducted in accordance with the typical pump-around operation detail as shown on the plans. Turbid water between impervious dikes must be pumped with a separate pump into sediment bags to be discharged downstream of the impervious dikes in accordance with the typical pumparound operation detail as shown on the plans. After the pump-around operation is properly initiated, proceed with construction in the sequence noted below:
  - Remove all vegetation transplants, including individual specimens and vegetated a. mats), stockpile and maintain in accordance with the project specifications.
  - Remove any appropriate trees to be used as rootwads, header logs, footer logs, or h logs sills and stockpile in accordance with the project specifications.
  - Perform required clearing and grubbing. с.
  - Segregate and stockpile topsoil and other soil material in accordance with the project specifications.


- Beginning at the upstream end of the area of active construction, proceed in the downstream direction with construction of the proposed stream channel. excavating and shaping the channel and installing the required in-stream structures as specified on the plans.
- f. Perform all topsoil replacement, vegetation transplanting, seeding (temporary and permanent), soil amendment, mulching, and installation of all erosion control matting as specified on the plans and the project specifications. Stream banks will have permanent and temporary seed, soil amendments, mulch, and erosion control matting applied to them as work progresses and by the end of each day. Erosion control matting will be installed on top of the seeded, amended, and mulched stream banks according to the project specifications.
- For sections of proposed channel on new alignment, leave the reach of proposed g, channel on new alignment disconnected (at its upstream end) from the existing active stream channel until construction of the proposed reach of channel on new alignment is completed. Leave such sections of proposed channel disconnected as described as long as possible in order to facilitate the establishment and growth of vegetation prior to activation of the new channel.
- h. For sections of proposed channel on new alignment, connect existing channel to the newly constructed channel at its upstream end. Immediately construct the impervious stream channel plug at the upstream end of the reach of existing channel to be abandoned. Haul other soil material produced during construction of this reach back to the abandoned stream reach and use it to begin filling the abandoned channel.
- Complete all work within the limit of the given pump-around operation before beginning additional work at other locations. After completing all work within the limit of the current pump-around operation, proceed with the next downstream segment of construction.
- Relocate pump-around operation to next location downstream. Leave impervious dike that was located at the downstream end of the previous pump-around operation in place to serve as the impervious dike at the upstream end of the new pump-around operation. Install an impervious dike at the downstream end of the new pump-around operation. After the new pump-around operation is properly initiated, repeat steps a. through i. along the entire reach until the construction of the reach is completed.

#### 3. Remove and dispose of all unused vegetation materials.

- 4. All excavated soil materials not utilized will be stockpiled and maintained according to the project specifications. After the completion of construction, all unused soil materials shall be spread on site in active agricultural areas on the properties owned and operated by the Walker Family Trust at the direction of the Designer and the said property owners. Spread soil to be stabilized using seeding per the project specifications.
- 5. All remaining disturbed areas are to be amended, seeded, matted and/or mulched according to the project specifications.

- - a. b. c. d. e. f. g.

h.



#### PHASE 13

1. Designer will perform construction staking.

2. Begin pump-around operation at upstream end of reach. Install an impervious dike at upstream and downstream ends of the proposed limit of the area of active construction in order to isolate all work from stream flow. Pump-around operation should be conducted in accordance with the typical pump-around operation detail as shown on the plans. Turbid water between impervious dikes must be pumped with a separate pump into sediment bags to be discharged downstream of the impervious dikes in accordance with the typical pumparound operation detail as shown on the plans. After the pump-around operation is properly initiated, proceed with construction in the sequence noted below:

> Remove all vegetation transplants, including individual specimens and vegetated mats), stockpile and maintain in accordance with the project specifications.

> Remove any appropriate trees to be used as rootwads, header logs, footer logs, or logs sills and stockpile in accordance with the project specifications.

Perform required clearing and grubbing.

Segregate and stockpile topsoil and other soil material in accordance with the project specifications.

Beginning at the upstream end of the area of active construction, proceed in the downstream direction with construction of the proposed stream channel, excavating and shaping the channel and installing the required in-stream structures as specified on the plans.

Perform all topsoil replacement, vegetation transplanting, seeding (temporary and permanent), soil amendment, mulching, and installation of all erosion control matting as specified on the plans and the project specifications. Stream banks will have permanent and temporary seed, soil amendments, mulch, and erosion control matting applied to them as work progresses and by the end of each day. Erosion control matting will be installed on top of the seeded, amended, and mulched stream banks according to the project specifications.

For sections of proposed channel on new alignment, leave the reach of proposed channel on new alignment disconnected (at its upstream end) from the existing active stream channel until construction of the proposed reach of channel on new alignment is completed. Leave such sections of proposed channel disconnected as described as long as possible in order to facilitate the establishment and growth of vegetation prior to activation of the new channel.



- Complete all work within the limit of the given pump-around operation before i. beginning additional work at other locations. After completing all work within the limit of the current pump-around operation, proceed with the next downstream segment of construction.
- Relocate pump-around operation to next location downstream. Leave impervious dike that was located at the downstream end of the previous pump-around operation in place to serve as the impervious dike at the upstream end of the new pump-around operation. Install an impervious dike at the downstream end of the new pump-around operation. After the new pump-around operation is properly initiated, repeat steps a. through i. along the entire reach until the construction of the reach is completed.
- 3. Remove and dispose of all unused vegetation materials.
- 4. All excavated soil materials not utilized will be stockpiled and maintained according to the project specifications. After the completion of construction, all unused soil materials shall be spread on site in active agricultural areas on the properties owned and operated by the Walker Family Trust at the direction of the Designer and the said property owners. Spread soil to be stabilized using seeding per the project specifications.
- 5. All remaining disturbed areas are to be amended, seeded, matted and/or mulched according to the project specifications.

#### PHASE 14

REACH R2 FROM CONFLUENCE WITH REACH R2D TO END OF PROJECT

- 1. Designer will perform construction staking.
- 2. Begin pump-around operation at upstream end of reach. Install an impervious dike at upstream and downstream ends of the proposed limit of the area of active construction in order to isolate all work from stream flow. Pump-around operation should be conducted in accordance with the typical pump-around operation detail as shown on the plans. Turbid water between impervious dikes must be pumped with a separate pump into sediment bags to be discharged downstream of the impervious dikes in accordance with the typical pumparound operation detail as shown on the plans. After the pump-around operation is properly initiated, proceed with construction in the sequence noted below:
  - a. Remove all vegetation transplants, including individual specimens and vegetated mats), stockpile and maintain in accordance with the project specifications.
  - b. Remove any appropriate trees to be used as rootwads, header logs, footer logs, or logs sills and stockpile in accordance with the project specifications.
  - c. Perform required clearing and grubbing.
  - d. Segregate and stockpile topsoil and other soil material in accordance with the project specifications.

- Beginning at the upstream end of the area of active construction, proceed e downstream direction with construction of the proposed stream channel. excavating and shaping the channel and installing the required in-stream structures as specified on the plans.
- Perform all topsoil replacement, vegetation transplanting, seeding (temporary and f. permanent), soil amendment, mulching, and installation of all erosion control matting as specified on the plans and the project specifications. Stream banks will have permanent and temporary seed, soil amendments, mulch, and erosion control matting applied to them as work progresses and by the end of each day. Erosion control matting will be installed on top of the seeded, amended, and mulched stream banks according to the project specifications.
- For sections of proposed channel on new alignment, leave the reach of proposed g. channel on new alignment disconnected (at its upstream end) from the existing active stream channel until construction of the proposed reach of channel on new alignment is completed. Leave such sections of proposed channel disconnected as described as long as possible in order to facilitate the establishment and growth of vegetation prior to activation of the new channel.
- For sections of proposed channel on new alignment, connect existing channel to the newly constructed channel at its upstream end. Immediately construct the impervious stream channel plug at the upstream end of the reach of existing channel to be abandoned. Haul other soil material produced during construction of this reach back to the abandoned stream reach and use it to begin filling the abandoned channel.
- Complete all work within the limit of the given pump-around operation before beginning additional work at other locations. After completing all work within the limit of the current pump-around operation, proceed with the next downstream segment of construction.
- Relocate pump-around operation to next location downstream. Leave impervious dike that was located at the downstream end of the previous pump-around operation in place to serve as the impervious dike at the upstream end of the new pump-around operation. Install an impervious dike at the downstream end of the new pump-around operation. After the new pump-around operation is properly initiated, repeat steps a. through i. along the entire reach until the construction of the reach is completed.

3. Remove and dispose of all unused vegetation materials.

- 4. All excavated soil materials not utilized will be stockpiled and maintained according to the project specifications. After the completion of construction, all unused soil materials shall be spread on site in active agricultural areas on the properties owned and operated by the Walker Family Trust at the direction of the Designer and the said property owners. Spread soil to be stabilized using seeding per the project specifications.
- 5. All remaining disturbed areas are to be amended, seeded, matted and/or mulched according to the project specifications.

#### DEMOBILIZATION AND PLANTING

- 5. Remove all tree protection fencing.
- specifications

  - federal regulations.

| REVISIONS          | PROJECT ENGINEE' | PROJECT REFERENCE NO.                                                         | SHEET NO. |  |  |  |  |  |  |  |  |
|--------------------|------------------|-------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|--|--|
| DESCRIPTION        |                  | LITTLE WHITE OAK CREEK                                                        | 2G        |  |  |  |  |  |  |  |  |
| UED FOR PERMITTING | -<br>Do Not Use  | CONST. SEQUENCE                                                               |           |  |  |  |  |  |  |  |  |
|                    | FOR CONSTRUCTION |                                                                               |           |  |  |  |  |  |  |  |  |
|                    |                  | PO Box 33127<br>Raleigh, N.C. 27636<br>(919) 851-1912<br>(919) 851-1918 (FAX) |           |  |  |  |  |  |  |  |  |

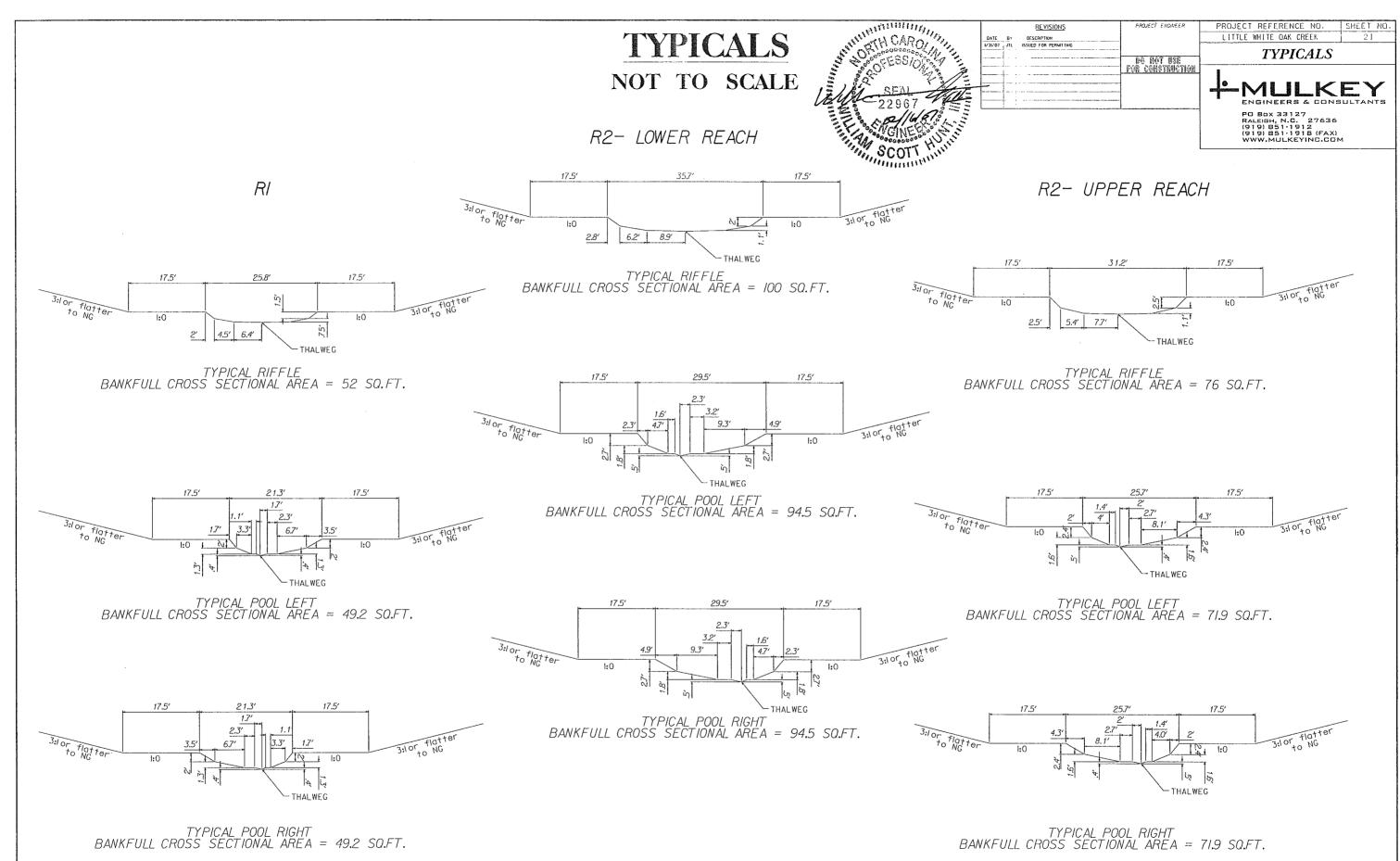
#### PHASE 15

1. Complete remaining minor grading and site planting preparation work, including ripping and/or discing, as specified in the project specifications.

2. All remaining disturbed areas, including areas that have been ripped and/or disced after temporary and/or permanent seeding activities, are to be amended, seeded, matted and/or mulched according to the project specifications.

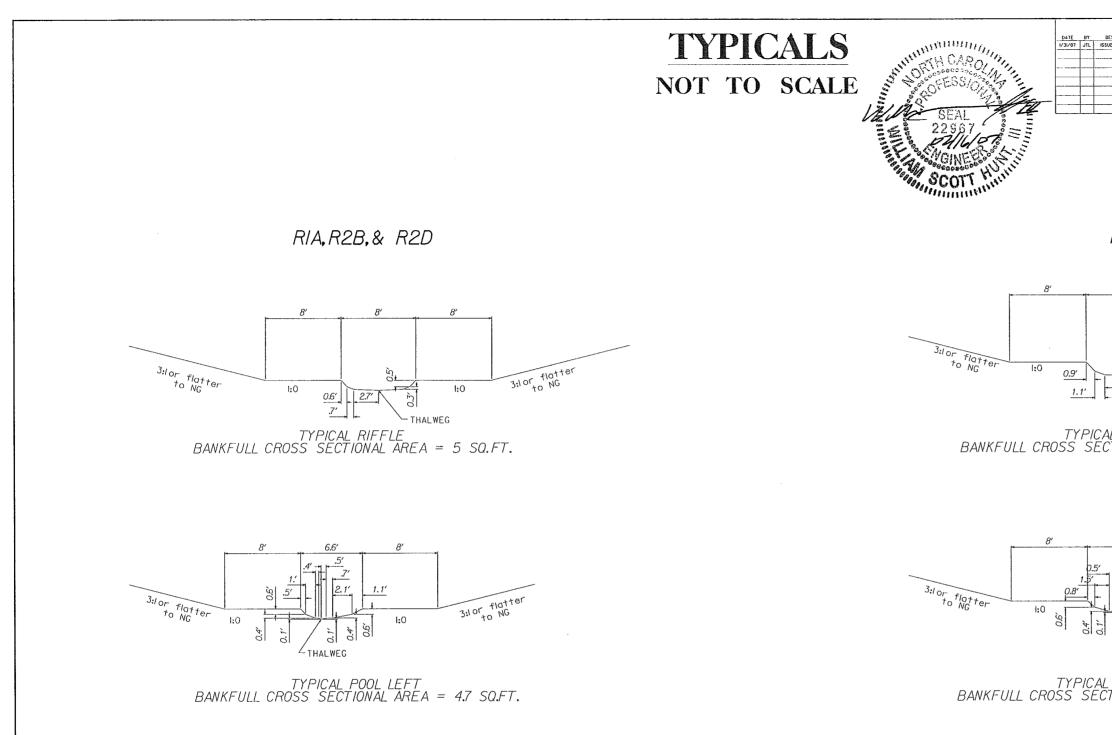
3. After all construction requiring heavy equipment is completed, remove silt fence and restore construction access roads, staging areas, and stockpile areas. Immediately regrade, replace topsoil, and seed, amend, and mulch as specified in the project specifications.

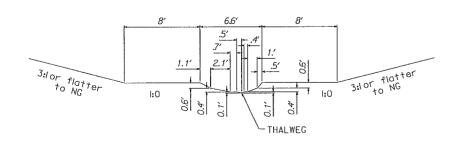
4. Remove temporary construction entrances. Immediately regrade, seed, amend, and mulch as specified in the project specifications.


6. Complete all remaining proposed permanent vegetation planting per the plans and project

7. Install permanent fencing and gates for the conservation easement.

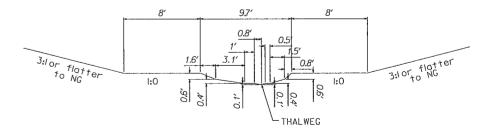
8. Remove and dispose of all trash, metal, and debris from the site according to local, state and

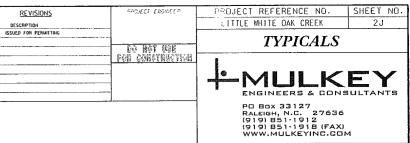

÷


|                                                                                                               |                                         |                                                            | Γ                                     | <b>M</b> (                                          | OR                                                       | P                                                | H(                                   | DI                                       | 20                                        | G                                     | IC                                        |                                              |                                      | T                                     | AB                                        | BL]                                  | ES                                       | Y                                                           | DATE<br>1/31/07                       | BY DESC                                           | REVISIONS<br>REPTION<br>FOR PERMITTIN             | 6                                    | PROJECT ENSINEER                                   | LITTLE WHITE OAK CREEK MORPH. TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------|---------------------------------------|-----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|--------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------|-------------------------------------------|----------------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|-------------------------------------------------------------|---------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                                               | NAME                                    |                                                            | RE                                    |                                                     | r                                                        | RIA                                              |                                      | 1                                        | R2 Upper                                  |                                       | 1                                         | R2 Lawer                                     |                                      |                                       | R2A                                       |                                      |                                          | 1218                                                        |                                       |                                                   | R3D                                               |                                      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| Variables<br>E. Stream Tepe<br>2. Drainoge Area, op. m. (actor)                                               |                                         | Existing<br>Degraded E5<br>4.46 2854.4                     | Proposed<br>C5<br>4.46 2854.1         | Reference<br><u>C</u> ( )<br>0.86 <sup></sup> 554.9 | Existing<br>Dependent file<br>0,11 °0,1                  | Proposed<br>CS<br>0.1170.4                       | Reference<br>(3-1<br>0.867 553.9     | Existing<br>Degraded E5<br>6.20(3066.91) | Proposed<br>(25<br>(6.29)3966,91          | Reference<br>64-1<br>0.867/551.9      | Existing<br>Deguded E5<br>10.85 6943.9    |                                              | CE1<br>0.\$67(554.9                  | Existing<br>Degraded E-1<br>0.31354.6 | Proposed<br>C-1<br>0.54.351.65            | Reference<br>C4 1<br>0.867 554.9     | Existing<br>cos<br>0.12 Te.80            | - Gi                                                        | Reference<br>C4 1<br>0.86*-554,9      | Existing<br>Degraded E6<br>0.05 (31.65)           | Proposed<br>C6<br>0.05-31,65                      | Reference<br>C4 1<br>0.86* 554.9     | L                                                  | PD Box 33127<br>Raleigh, N.C. 27636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ANTS                                                                                        |
| <ol> <li>Emkfull Widde, fr Whkij</li> <li>Bankfull Mean Depth, fr diskij</li> </ol>                           | Mean:<br>Mountaine<br>Maximume<br>Mean: | 18.430<br>16.550<br>20.310<br>3.315                        | 25.098                                | 35.523<br>35.970<br>201.000                         | 4,510<br>10,950<br>0,450                                 | 964                                              | 18.523<br>15.9%<br>20,0%             | 24.385<br>24.259<br>24.599               | 31.965                                    | 16.523<br>15.970<br>20.600            | 30.355<br>28.530<br>32.180                | 35,63*                                       | 18.523<br>15.9°0<br>20.600           | 11.190<br>11.180<br>11.200            | 11.726                                    | 18.523<br>15.9°0<br>20.600           | 8-154<br>1-540<br>6-640                  | 150                                                         | 18,523<br>15,9° n<br>20,600           | 5,500<br>3,800<br>200                             | - 969                                             | 18.523<br>15.970<br>20.600           |                                                    | (919) 851-1912<br>(919) 851-1918 (FAX)<br>WWW.MULKEYINC.COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |
| <ol> <li>Bankton Siesh Depth Raiso Whiti dikti;</li> </ol>                                                    | Montone<br>Montone<br>Mont              | 3.200<br>3.430<br>5.547                                    | 12,700                                | 1,580<br>1,520<br>10,342                            | 0.360<br>0.510<br>10.384                                 | 12.744                                           | 1,630<br>1,580<br>1,720<br>11,342    | 3.135<br>3.130<br><u>3.140</u>           | 2 1 lo                                    | 1.649<br>1.589<br>1.720<br>11.312     | 3,400<br>3,310<br>3,496<br>8,948          | 2.8%                                         | 1.646<br>1.580<br>1.726<br>11.342    | 1,235<br>6,9°0<br>1,500<br>9,496      | 0.238                                     | 1.640<br>1.580<br>1.726<br>11.342    | 1,3%<br>1,3%<br>1,3%<br>1,3%             | 12 7191                                                     | 1.640<br>1.580<br>1.720<br>11.342     | 0,750<br>0,760<br>                                | 0.62*                                             | 1.586<br>1.720                       |                                                    | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
| 6. Bankfull Cross Sectional Area, sq fi                                                                       | Minimum<br>Meangong                     | 5.172<br>5.921<br>61.330                                   | 52,(%)                                | 9.285<br>12.°16<br>39.24°                           | 12 528<br>20211<br>3.735                                 | 51444                                            | 4 285<br>12,746<br>36,247            | 29<br>82<br>                             | -6,000                                    | 9.285<br>12.716<br>30.247             | 8.1°5<br>9.°22<br>143.135                 | jenýsiwn                                     | 9.285<br>12.716<br>30.247            | 46<br>11.526<br>13.800                | 12,000                                    | 9.285<br>12.716<br>30.247            | 3.413<br>1.776<br>1.325                  | 3,100                                                       | 9 285<br>12,716<br>30,247             | 3 266<br>8.849<br>4.250                           | 5,000                                             | 11.342<br>9.285<br>12,*16<br>30,24*  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| Abki'<br>- Bankfull Mean Vehicity, fpr /Vbkf                                                                  | Masimana<br>Masimuna                    | 32.940<br>49,720                                           |                                       | 2",410<br>33,3"0                                    | 1.620<br>5,850                                           |                                                  | 27 410<br>33,370                     | 76,130<br>76,736                         |                                           | 27,410<br>33,370                      | 99,689<br>106,590                         |                                              | 27,410<br>33,370                     | 16,829                                |                                           | 27.410<br>33.370                     | 5 42-5<br>5,730                          |                                                             | 2" 119<br>33.3"0                      | 2,700<br>5,800                                    |                                                   | 27.410<br>33.3°0                     |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 8. Bonkfull Discharge, efe (Qbkfy                                                                             | Mean:<br>Means                          | 4.420                                                      | 5.212                                 | 1.242                                               | 5.214                                                    | 3,910                                            | 1242                                 | 1 149                                    | 310.000                                   | 4 242                                 | 4.*41                                     | 4.890                                        | 4 2 1 2                              | 3.185                                 | 3.595                                     | 4.242                                | 0.12                                     | 5. Bent                                                     | 4.242                                 | 5.252                                             | -1-46-1                                           | 4.242                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| <ol> <li>Maximum Bank foll Depth. 6<br/>duable.</li> </ol>                                                    | Means<br>Means                          | 3.692                                                      | 2.342                                 | 1.898                                               | 0.860                                                    | 0,726                                            | 1.898                                | 1 100                                    | 2.631                                     | 1.875                                 | 3.953                                     | 3.248                                        | 138,300<br>1.898<br>1.540            | 43.950                                | 43 950<br>1,086<br>0,881                  | 1.878<br>1.540                       | 3 ( 1999)<br>                            | 31 min<br>11 26<br>10,589                                   | 128,300<br>1,896<br>1,540             | 22.320<br>1.400<br>1.150                          | 0,724                                             | 128.300<br>1.828<br>1.540            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 10. Massimum Riffle Depth. Means<br>Riffle Depth. Shinkki' dikti                                              | Monitoria<br>Mesia<br>Marinoria         | 5,000<br>1,114<br>0,215                                    | 2.913                                 | 2.360<br>1.15 <sup>-</sup><br>0.939                 | 1.180<br>1.911<br>1.200                                  | 0,903<br>1.15°<br>0,939                          | 2.366                                | 1,9.4×<br>1,3×8<br>1,152                 | 3.520                                     | 2,360                                 | 4.200                                     | 4.038<br>1.15 <sup>-</sup><br>0.939          | 2.360                                | 2.230<br>1.200<br>0.167               | 1.350                                     | 2.360                                | 1.500<br>1.316<br>1.278                  | 1.15°<br>-0.939                                             | 2.360<br>1.45"<br>0.939               | 1,650<br>1,650<br>1,810<br>1,490                  | 0.589<br>0.903<br>1.15°<br>0.939                  | 2.360                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 11. Ratio of Low Bank Height to<br>Advantate Bankfoll Depth                                                   | Maximiune<br>Mean:<br>Mininteine        | 1,508<br>2.203<br>1,516                                    | 1.439<br>1.600<br>1.900               | 1.439<br>1.228<br>1.048                             | 2.622<br>3.703<br>3.110                                  | 1.09<br>1.09<br>1.00                             | 1.439<br>1.228<br>1.698              | 1,5°6<br>1,611<br>1,4°4                  | 1,-139<br>1,-139<br>1,-100                | 1,439<br>3,228<br>1,445               | 1,235<br>1,750<br>1,480                   | 1,439<br>1,000<br>1,000                      | 1.439<br>1.228<br>1.668              | 1.8%                                  | 1,439<br>1,860<br>1,860                   | 1,439<br>1.228<br>1,018              | 1.353<br>2.625<br>1.413                  | 1.432<br>Dona<br>Linna                                      | 1.439                                 | 2,140<br>3.226<br>2.465                           | 1.439                                             | 1.439<br>1.228<br>1.008              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 1.811 dobb(f<br>12. Width of Fland Prone Area, fr<br>Wifter                                                   | Massinoure<br>Mean:<br>Minimome         | 2.546<br>94.085<br>69.590<br>118.580                       | 1.000<br>98.413<br>90.792             | 1.416<br>10.180<br>67.150                           | 4,396<br>13,825<br>8,550<br>19,070                       | 1,000<br>30,516<br>28 153                        | 1.416                                | 2.141<br>16-1.025<br>~~.050              | 1,000)<br>118,975<br>107) 762             | 1,416<br>70,189<br>67,159             | 1.945<br>124,560<br>89,480                | 1,000<br><u>136.1<sup>-1</sup></u><br>125.9% | 1.416<br>10.180<br>61.159            | 6,816<br>1*.520<br>15.990             | 1,000<br>41,905<br>41,428                 | 1.436<br>                            | 3.8%6<br>160.350<br>5.420                | 1.980<br>30.516<br>28.153                                   | (.416<br>70,18)<br>67 150             | 4.00 <sup>-</sup><br>10.485<br>8.3 <sup>-</sup> 0 | 1,000<br>30,516<br>28,153                         | 1.416<br>70.180<br>67.150            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 13. Enternchroent Ratio Wips White                                                                            | Mean:<br>Mean:<br>Minimum:              | 5 022<br>4,205<br>5,839                                    | 113.623<br>3.830<br>3.533<br>4.421    | 72,780<br>3,830<br>3,533<br>4,421                   | 1.824                                                    | 35,233<br>3 830<br>3,533<br>1,421                | 2.560<br>3.830<br>3.533<br>4.421     | 251,000<br>6,743<br>3,145<br>19,542      | 13°,363<br>3,830<br>3,533<br>4,421        | "2,"89<br>3 839<br>3,533<br>4,421     | 159.640<br>4.049<br>3.136<br>4.961        | 15".566<br>3.830<br>3.533<br>4.421           | 72.°80<br>3.830<br>3.533<br>4.421    | 19,050<br>1.566<br>1.428              | 51,846<br>3.830<br>3.533<br>4.421         | 1.530<br>3.530<br>3.533<br>4.421     | 195.280<br>15 762<br>1.202<br>30.333     | 35.233<br>3.830<br>3.533                                    | 2,780<br>3,830<br>3,533               | 12.600                                            | 35.233<br>3.83 <sup>m</sup><br>3.533              | -2. 60<br>3.830<br>3.533             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 14. Meander Length, It (Lin)                                                                                  | Mean:<br>Means<br>Meansan:<br>Maximens: | 135.700<br>107.000<br>189.300                              | 45.°82<br>215.038                     | 94,000<br>33,000<br>155,000                         | 0.000<br>0.000<br>0.000                                  | 40.439<br>44.19 <sup>-</sup><br>66.481           | 94,600<br>33,600<br>155,600          | 118.200<br>85.800<br>(65.100             | 4.421<br>15°.658<br>55.348<br>259.969     | 4.431<br>942,000<br>33.000<br>155,000 | 216.400<br>196.400<br>236.300             | 4.421<br>180 847<br>63 459<br>298.205        | 4.421<br>94.000<br>33.000<br>155.000 | 1.704<br>76.700<br>76.700<br>76.700   | 4.421<br>59.5%<br>20.890<br>98.121        | 4.421<br>94.000<br>33.000<br>155.000 | 30.333<br>10.690<br>10.000<br>10.000     | 3,421<br>40,439<br>14,197<br>46,681                         | 4.423<br>94.000<br>33.000<br>155.000  | 2.210<br>0.000<br>0.000<br>0.000                  | 4.421<br>40.439<br>14.49 <sup>7</sup><br>66.681   | 4.421<br>94.000<br>33,000<br>155.000 |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 15. Menuler Length Ratio                                                                                      | Mean:<br>Manimum:<br>Maximoum:          | 363<br>5,896<br>10,271                                     | 5.075<br>1,782<br>8.368               | 5.0°5<br>1.782<br>8.368                             | 0,005<br>0,000<br>0,060                                  | 5,075<br>1,782<br>5,368                          | 5.0°5<br>1,782<br>8,368              | 4.64<br>3.519<br>6.771                   | 5.0°5<br>1.°62<br>8.368                   | 5.0°5<br>1.782<br>8.368               | 129<br>6.4°0<br>785                       | 5.0°5<br>1.782<br>8.368                      | 5.0°5<br>1.°82<br>8.368              | 6.851<br><u>6.851</u><br>6.851        | 5.0°5<br>1.782<br>9.368                   | 5.0°5<br>1.782<br>8.368              | 0,000<br>0,000<br>0,000                  | 5.075<br>1.182<br>8.368                                     | 5.0°5<br>1.*82<br>8.368               | 0.000                                             | 5.0°5<br>1.782<br>8.368                           | 5.0°5<br>1.°82<br>8.368              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 16. Rodine of Corverture, ft (Re:                                                                             | Mannaan:<br>Maximaan:<br>Maximaan:      | 37.700<br>23,400<br>63,800                                 | 6°.980<br>26.360<br>159.545           | 49,060<br>19,000<br>115,000                         | 0,000                                                    | 21,080<br>8.1°4<br>49.4°3                        | -19,600<br>19,000<br>115,000         | 45,800<br>19, no<br>124,400              | 62.181<br>31.8c <sup>**</sup><br>192.88** | 49,000<br>19,000<br>115,000           | 5° 000<br>30,000<br>~9,500                | 94.2"1<br>36.554<br>221.249                  | 49.000<br>19.000<br>115.000          | 21.100<br>8.8(%<br>31.400             | 31,019<br>12,028<br>*2,800                | 49,000<br>19,000<br>115,000          | ര്ഗ്രങ്ങ<br>നുവർന<br>ഗ്രങ്ങ്             | 21,086<br>8,174<br>49,413                                   | 49,000<br>19,000<br>115,000           | 0.000<br>0.000<br>0.000                           | 21,089<br>8,174<br>49,473                         | -19,000<br>19,000<br>115,000         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| <ol> <li>Ratio of Radian of Carvature to<br/>Walth (Re Whit).</li> <li>Beh Walth, it (Whit).</li> </ol>       | Mean:<br>Minimume<br>Muximum:<br>Mean:  | 2.046<br>1.2°0<br>3.462<br>39.800                          | 2.645<br>1.026<br>6.208<br>92.952     | 2.645<br>1.026<br>6.208<br>67.000                   | 0,000<br>0,000<br>0,000                                  | 2.645<br>1.026<br>6.208<br>28.823                | 2 6 15<br>1 1226<br>6.208            | 1.8°8<br>0.808<br>5.101<br>32.800        | 2.645                                     | 2.645<br>1.026<br>6.208<br>67,000     | 0.986<br>2,619                            | 2.645<br>1.026<br>6.208                      | 2.645<br>1.026<br>6.208              | 1.886<br>0.786<br>2.8%                | 2.645<br>1.026<br>6.208                   | 2.645<br>1.026<br>6.248              | ເປັນເຊັນດີ<br>ເຊິ່ງເປັນແມ່ນ<br>ເຊິ່ງເປັນ | 2.645<br>1.636<br>6.205                                     | 2.645<br>1.026<br>6.208               | 0,000<br>0,000<br>0,000                           | 2.645<br>1 026<br>6.208                           | 2.645<br>1.026<br>6.208              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 19. Meandre Wich's Ratin Whit White                                                                           | Minimum:<br>Maximum:                    | 22.000<br>61.690<br>2.160                                  | 49,944<br>206,162<br>3.61 <sup></sup> | 36.000                                              | 0,000                                                    | 15.48"<br>64,530<br>3.61"                        | 67,000<br>36,000<br>150,000<br>3.617 | 15.200<br>48.700<br>1.345                | 112.3"4<br>60.380<br>251.583<br>3.61"     | 36.000<br>150.000<br>3.61 <sup></sup> | 42.300<br>16.200<br>69.500<br>1.394       | 128.901<br>69.260<br>288.585<br>3.617        | 67.000<br>36.000<br>150.000<br>3.617 | 20.200<br>20,200<br>30,200<br>1.805   | 42.414<br>22.789<br>94,956<br>3.617       | 67.000<br>36.000<br>150,000<br>3.617 | 0,000<br>0,000<br>0,000<br>0,000         | 28.823<br>15.48 <sup>-</sup><br>64.530<br>3.61 <sup>-</sup> | 6".000<br>36.000<br>150.000<br>3.61"  | 0.000                                             | 26.823<br>15.48 <sup>-</sup><br>64.530            | 67.000<br>36.000<br>150.000          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 20. Low Bank Height, B (J.BH)                                                                                 | Minimume<br>Moximume<br>Mean:           | 1.194<br>3.342<br>7.683                                    | 5.9-13<br>8.098<br>2.3-12             | 1.943<br>8.098<br>2.296                             | 0.000                                                    | 1.943<br>6,098<br>0.726                          | 1.943<br>6.098<br>2.296              | 0.623<br>1.99"<br>533                    | 1.943<br>8.098<br>2.831                   | 1.943<br>8.198<br>2.296               | 0.534<br>2.290<br>6.913                   | 1.943<br>B.(498<br>3.248                     | 1.943<br>8.098<br>2.296              | 1.805                                 | 1.943<br>8.098<br>1.086                   | 1.943<br>8.098<br>2.296              | 1,535                                    | 3.01<br>1.913<br>8.098                                      | 1.943<br>8,098<br>2.2%                | 0.000<br>0.000<br>0.000<br>4.338                  | 3.61<br>1.943<br>8.098<br>0.*26                   | 3.61<br>1.943<br>6.098<br>2.296      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 21. Summity (K)                                                                                               | Minimum:<br>Maximum:                    | 6.320<br>8,900                                             | 2.912                                 | 2.090                                               | 2.320                                                    | 0.589<br>0.903                                   | 2.6%                                 | 5,949<br>8,950                           | 2.29"<br>3.520                            | 2.090<br>2.6°0                        | 6.040<br>8.170                            | 2.635<br>4.038                               | 2.690<br>2.670                       | 4.210                                 | (0.861<br>1.350                           | 2.(9)<br>2.670                       | 2.(an)<br>(a.470)                        | 11.589<br>11.943                                            | 2,690                                 | 4.608                                             | 0.589                                             | 2.670                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 22 Valley Slape (VS)                                                                                          | Mean:                                   | 1.160                                                      | 1.300                                 | 1.460                                               | 1.060                                                    | 1300                                             | 1-859                                | 1.1 30                                   | 1,305                                     | 1.460                                 | 1.110                                     | 1.300                                        | 1.460                                | 1.120                                 | 1.300                                     | L.460                                | Loão                                     | 1.300                                                       | 1.460                                 | 1.129                                             | 1,300                                             | 1.46/                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 23. Average Water Stuface Stope (5) =<br>(VS. K)                                                              | Mean:                                   | 0.003                                                      | 0.003                                 | 0.013                                               | 0,613                                                    | 0.010                                            | 0.013                                | 0.002<br>0.002                           | 0,012                                     | 0.013                                 | 0.002                                     | 0.002                                        | 0.009                                | 0,012                                 | 0.012                                     | 0.013                                | 0.05                                     | 0.015                                                       | 0.013                                 | 0.012                                             | 0.012                                             | 0,013                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 24. Pool Slape (Sp)                                                                                           | Mean:<br>Minimum:                       | 0.00368                                                    | 0.000339495<br>0                      | 0.0012                                              | . 0                                                      | 0.00132"11"                                      | 0.0012                               | 0.000<br>0                               | 0.000246905                               | 0.0012                                | 0.00203                                   | 0.000216012                                  | 0.0012                               | 0.0026                                | 0.001234527                               | 0.0012                               | 6,014<br>0                               | 0.012                                                       | 0.009                                 | 0.011                                             | 0.010                                             | 0.009                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 25. Ratio of Pool Slope to Average<br>Water Slope (Sp. 5)                                                     | Masineun:<br>Mean:<br>Maninuun:         | 0.00548<br>0.590545455<br>0                                | 0.001225011<br>0.133**40458<br>0      | 0.133*40458                                         | 0<br>0<br>0                                              | 0.004*8868<br>0.133*40458<br>0                   | 0.133740458                          | 0,00178<br>9.31825<br>0                  | ((,)Ne(8969)1*<br>(),133* 4:458<br>0      | 0.00433<br>0.133740458<br>0           | 0.00493<br>1.073<br>0.084571429           | 0.000**9553<br>0.133*40458<br>0              | 0.00433<br>0.133°40458<br>0          | 0.00891<br>0.243666666*<br>0          | 0.004454586<br>0.133*40458<br>0           | 0,00433<br>0.133°40458<br>0          | 0<br>0                                   | 0.133740458                                                 | 0.00433<br>0.133740458<br>0           | 0<br>0                                            | 0,0046030*2<br>0,133*40458<br>0                   | 0.00433<br>0.133~40458<br>0          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| :<br>26. [Riffle Shipe] water surface faces<br>shipe] (Snif                                                   | Mean:<br>Mean:<br>Minimum:              | 1.92630303<br>0.010<br>0.001                               | 0.482580153<br>0.008<br>0.002         | 0.482580153                                         | 0<br>0.000<br>0.000                                      | 0.482580153<br>0.031<br>0.00 <sup>-</sup>        | 0.482580153                          | 0.8455<br>0.005<br>0.001                 | 0.462580153<br>0.006<br>0.001             | 0.482589153<br>0.028<br>0.096         | 2.595285^14<br>0.00 <sup>-</sup><br>0.001 | 0.192580153<br>0.005<br>0.001                | 0.482580153<br>0.028<br>0.006        | 0.8316<br>0.011<br>0.004              | 0.482580153<br>0.029<br>0.00 <sup>-</sup> | 0.482580153<br>0.028<br>0.006        | 0<br>0,000<br>0,000                      | 0.482560153<br>0.03<br>0.03                                 | 0.482580153<br>0.028<br>0.096         | 0<br>0.000<br>0.000                               | 0.482580153<br>0.030<br>0.00*                     | 0.482580153<br>0.028<br>0.006        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 27. Ratio of Riffle Slope to Average<br>Water Slope Sof St                                                    | Meau:<br>Meau:<br>Moaman:               | 0.11<br>3.677<br>0.432<br>41.157                           | 0.019<br>3.162<br>0.704<br>7.301      | 0.066 3.162 0.704 7.30)                             | 0.000<br>0.000<br>0.000<br>0.000                         | 0.012                                            | 0.066<br>3.162<br>0.704<br>7.301     | 1.658<br>0.442                           | 0.013<br>3.162<br>0.564                   | 0,066<br>3.162<br>0,704<br>7,301      | 0,024<br>3.504<br>0.423                   | 0.012<br>3.162<br>0.704                      | 0.066 3.162 0.704                    | 0.024<br>0.996<br>0.395               | 0.06°<br>3.162<br>0.704                   | 0.966<br>3.162<br>0.704              | 1,0,0<br>1,0,0<br>1,0,0<br>1,0,0         | 1.0\$5<br>3.162<br>1.704                                    | 0,066<br>3.162<br>0,764               | 0.000<br>0.000<br>0.000                           | 0,010<br>3.162<br>0,104                           | 0.066<br>3.162<br>0.704              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 28. Rom Shope (water oufface face)<br>.dops/_[Snm]                                                            | Maximum:<br>Maximum:<br>Maximum:        | 0.004                                                      | 6,00 <sup></sup><br>0,003<br>0,022    | 0.024                                               | 0.000<br>9.000<br>0.000                                  | 0,010<br>0,05°                                   | 0,024<br>0,024<br>0,049<br>0,079     | 3,900<br>0,003<br>0,003<br>0,003         | - 301<br>0.065<br>0.002<br>0.016          | 0.024<br>0.009<br>0.079               | 12.5)1<br>0.008<br>0.001<br>0.019         | 7,301<br>0,004<br>0,002<br>0,014             | 7,301<br>0.024<br>0.009<br>0.079     | 2.362<br>0.008<br>0.003<br>0.014      | 301<br>0,025<br>0,069<br>0,081            | 7.301<br>0.024<br>0.009<br>0.019     | 0,000<br>0,000<br>0,000<br>6,600         | 7.301<br>0.032<br>0.012<br>0.163                            | 301<br>0.024<br>0.029<br>0.079        | 0.000                                             | 7,301<br>0,026<br>0.010                           | 7.301<br>0.024<br>0.009<br>0.079     |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 29. Ratio Run Slope Average Water<br>Surface Slope (Snin S)                                                   | Mean:<br>Minimorn:<br>Maximorn:         | 1.522<br>0.179<br>3.937                                    | 2.700<br>1.0%<br>8.80 <sup>°</sup>    | 2.700<br>1.006<br>8.80                              | 0.000<br>4.000<br>0.000                                  | 2.760<br>1.006<br>8.807                          | 2,"(4)<br>3,fm6<br>8,80"             | 1.325<br>0.423<br>2.309                  | 2.746<br>1.006<br>8.897                   | 2.700<br>1.096<br>8.807               | 3.991<br>0.391<br>10.143                  | 2.500                                        | 2.700                                | 0.294                                 | 2,500<br>1,006<br>8,807                   | 2.°00<br>1.006<br>8.80°              | n dajan<br>A ngan<br>A ngan              | 2,700<br>1,706<br>8,807                                     | 2,*00<br>1,0%<br>8,80*                | 0.000                                             | 0.084<br>2.700<br>1.006<br>8.807                  | 2,*00<br>1.006<br>8,607              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 30. Slope of Glide water ourface facet<br>done) (Sg                                                           | Mean:<br>Minimon:<br>Maximum:           | 0.994<br>0.992<br>0.995                                    | 0.001<br>0.000<br>0.004               | 0.005<br>0.000<br>0.013                             | 0.000<br>0.000<br>0.000                                  | 0.004<br>0.000<br>0.014                          | 0,003<br>0,003<br>0,013              | 0.004<br>0.001<br>0.00*                  | 1004<br>0.060<br>9.063                    | 0.003<br>• 0.000<br>0.013             | 0,003<br>0,001<br>0,010                   | 0,001<br>0,000<br>0,002                      | 0.003                                | 0.008<br>0.004<br>0.010               | 0.003                                     | 0.003<br>0.019<br>0.013              | 0.000<br>0.000<br>0.000                  | 0,004<br>0,0(0<br>4,0[*                                     | 0,003<br>0,000<br>0,013               | 0.000                                             | 0.003<br>0.000<br>0.014                           | 0.003<br>0.000<br>0.013              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 31. Ratio Glide Slope Average Water<br>Surface Slope (Sg S)                                                   | Mean:<br>Maximum<br>Maximum:            | 1.304<br>0.629<br>2.056                                    | 0.362<br>0.000<br>1.453               | 0.362<br>0.000<br>1.453                             | 0.000<br>0.000<br>0.000                                  | 0.362<br>0.000<br>1.453                          | 0.362<br>0.600<br>1.453              | 1.66 <sup>-</sup><br>0.561<br>3.202      | 0.362<br>6,000<br>1.453                   | 0.362<br>0.000<br>1.453               | 1.818<br>0.634<br>5.423                   | 0.362<br>0.000<br>1.453                      | 0.362<br>0.000<br>1.453              | 0.763<br>0.404<br>0.950               | 0.362<br>0.000<br>1.453                   | 0.362<br>0.000<br>1.453              | 0.000<br>6.400<br>6.400                  | 0.362<br>0.000<br>1.453                                     | 0.362<br>0.000<br>1.453               | 0.000<br>0.000<br>0.000                           | 0.362<br>0.000<br>1.453                           | 0.362<br>0.000<br>1.453              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 32. Meximum Pool Depth. fr (dpool)<br>33. Ratio of Maximum Pool Depth to                                      | Mean:<br>Minimusm:<br>Maximum:<br>Mean; | 4.700<br>3.500<br>6,600<br>1.418                           | 3.553<br>2.6**<br>4.096<br>1.756      | 2.880<br>2.170<br>3.320                             | 1,380<br>1,110<br>1,640                                  | 1.102<br>0.830<br>1.210<br>1.756                 | 2.880<br>2.170<br>3.320<br>1.756     | 5 280<br>4.610<br>6.290                  | 1 2%<br>3,23*<br>1,952                    | 2.680<br>2.1°0<br>3.320               | 4.9%                                      | 4.928<br>3.713<br>5.681                      | 2.880                                | 2.210<br>1.200<br>3.640               | 1.647<br>1.241<br>1.899                   | 2.880<br>2.170<br>3.320              | 6,060<br>0,460<br>6,460                  | 6.102<br>(0.830<br>1.270                                    | 2.880<br>2.1°0<br>3.320               | 0.000                                             | 1 102<br>0.630<br>1.210                           | 2.880<br>2.170<br>3.320              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| <ol> <li>Krine of Maximum Pool Depth to<br/>Mean Depth (dpaul dbkf)</li> <li>Mean Depth, fri dnan,</li> </ol> | Mean;<br>Minimum;<br>Maximum;<br>Mean;  | 1.418<br>1.056<br>1.991<br>4.130                           | 1.756<br>1.323<br>2.024<br>2.887      | 1.756<br>1.323<br>2.024<br>2.340                    | 3.06 <sup>-</sup><br>2.46 <sup>-</sup><br>3.644<br>0.000 | 1,756<br>1,323<br>2,024<br>0,895                 | 1.756<br>1.323<br>2.624<br>2.340     | E.68-1<br>E.4*0<br>2.096<br>4.140        | 1.756<br>1.323<br>2.024<br>3.490          | 1.756<br>1.323<br>2.024<br>2.340      | 1.462<br>1.094<br>1.*53<br>4.149          | 1.756<br>1.323<br>2.024<br>4.004             | 1.756<br>1.323<br>2.024<br>2.349     | 1."89<br>0.9"2<br>2.94"               | 1.756<br>1.323<br>2.024<br>1.338          | 1.756<br>1.323<br>2.024<br>2.349     | 0,000<br>0,000<br>0,000                  | 1.°56<br>1.323<br>2,024<br># 895                            | 1,756<br>1,323<br>2,024               | 0.000                                             | 1.756<br>1.323<br>2.024                           | 1.756<br>1.323<br>2.024              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 35. Ratio Max Run Depth Bankfull                                                                              | Minimum:<br>Maximum:<br>Mean:           | 2.690<br>5.790<br>1.246                                    | 2.727<br>3.356<br>1.427               | 2.210<br>2.720<br>1.427                             | 0,000<br>0,000                                           | 0.846<br>3.741<br>1.427                          | 2 210<br>2.726<br>1.427              | 3 910<br>5.530<br>1.416                  | 3.29"<br>4.05"<br>1.42"                   | 2.310<br>2.730<br>1.427               | 3.360<br>4.620<br>1.216                   | 3.°81<br>4.654<br>1.42°                      | 2.240<br>2.720<br>1.42               | 1.780<br>1.040<br>2.650<br>1.041      | 1.556<br>1.42"                            | 2.210<br>2.720<br>1.42               | 6,000<br>6,000<br>6,000                  | + 846<br>1.041<br>1.42*                                     | 2.340<br>2.210<br>2.*20<br>1.42*      | 0,000                                             | 0.895<br>0.846<br>1.041<br>1.42*                  | 2.340<br>2.210<br>2.730<br>1.427     |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| Mean Depth (dum, dlokt)<br>36. Maximum Glide Depth, ft (dg                                                    | Minimum<br>Meximum<br>Mesur             | 0.811<br>1.747<br>4.200                                    | 1.348<br>1.659<br>2.591               | 1.348<br>1.659<br>2.100                             | 0.000<br>0,000<br>0,000                                  | 1.3 18<br>1.659<br>1.803                         | 1.348                                | 1.24"<br>1.764<br>4.440                  | 1.348<br>1.659<br>3.133                   | 1.3-18<br>1.659<br>2.100              | 0.988<br>1.359<br>4.350                   | 1,348<br>1,659<br>3,595                      | 1.348<br>1.659<br>2.100              | 0.842<br>2.146                        | 1.42 1.348 1.659 1.201                    | 1.42<br>1.348<br>1.659<br>2.109      | 6,000<br>0,000<br>0,000                  | 1.348<br>1.659<br>9.803                                     | 1.42<br>1.316<br>1.659<br>2.0x0       | 0,000                                             | 1.42<br>1.346<br>1.659<br>0.803                   | 1.42-<br>1.348<br>1.659<br>2.100     |                                                    | MINIMUM CARO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |
| 3". Ratio of Max Glide Depth Bankfull                                                                         | Minimum:<br>Maximum:<br>Mean:           | 2.720<br>5.480<br>1.26 <sup>-</sup>                        | 2.085<br>3.134<br>1.280               | 1.690<br>2.540<br>1.280                             | 0.000<br>0.000<br>0.000                                  | 0.64 <sup>+</sup><br>0.9 <sup>+</sup> 2<br>1.280 | 1.690<br>2.5-10<br>1.280             | 3.910<br>5.530<br>1.416                  | 2.521<br>3.759<br>1.289                   | 1.690<br>2,540<br>1.280               | 3.810<br>4.930<br>1.279                   | 2.892<br>4.346<br>1.280                      | 1 690<br>2,540<br>1,280              | 0.640<br>2.430<br>1.441               | 0.967                                     | 1 690<br>2.540<br>1.280              | 0.000<br>0.000<br>0.000                  | 0.64"<br>0.9"2<br>1.250                                     | 1.690<br>2.540<br>1.280               | 0,000<br>0,000<br>0,000                           | 0.647<br>0.972<br>1.280                           | 1.690 2.540 1.280                    |                                                    | S C SSING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |
| Mean Depth (dg. dbkt)<br>38. Pool Width, 0 (Whisp                                                             | Miningan:<br>Maximgan:<br>Mean:         | 0.821                                                      | 1.030<br>1.549<br>21.263              | 1.030<br>1.549<br>15.32                             | 0.000<br>0.000<br>3.215                                  | 1 650<br>1,5 PP<br>6,593                         | 1.030<br>1.549<br>15.32"             | 1.24°<br>1.°64<br>31.13%                 | 1.030<br>1.549<br>25, 06                  | 1.030<br>1.549<br>15.32*              | 1.121<br>1.450<br>44.200                  | 1.030<br>1.549<br>19.48"                     | 1.030<br>1.549<br>15.32*             | 0.518<br>1.768<br>11.145              | 1.036<br>1.519<br>9.702                   | 1.030<br>1.549<br>15.32              | 0.000<br>0.000<br>0.000                  | 1.030<br>1.549<br>6.593                                     | 1.030<br>1.549<br>15.32"              | 0.600<br>0.000<br>0.000                           | 1.030<br>1.549<br>6.593                           | 1.030<br>1.549<br>15.32              |                                                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .                                                                                           |
| 32. Ratio of Poel Within to Bankfull<br>Within Within Within                                                  | Minimon:<br>Maximon:<br>Mean:<br>Mean:  | 25.370<br>25.740<br>1.387<br>1.377                         | 16.801<br>26.221<br>0.82"             | 12.110<br>18,900<br>0.82 <sup>-</sup>               | 3.640                                                    | 5 210<br>8.131<br>0.82 <sup>-</sup>              | 12.110<br>18.900<br>0.82"            | 30.960<br>31.300<br>1.2                  | 2%311<br>31.699<br>9.82*                  | 12,110<br>18,900<br>0,82              | 34 700<br>53,700<br>1.456                 | 13.398<br>36.363<br>0.82                     | 12.110<br>18,900<br>0.827            | 680<br>14,610<br>0.996                | 666<br>11.964<br>0.82 <sup></sup>         | 12.110<br>18,9%0<br>0.827            | 6,000<br>6,000<br>6,000                  | 5.210<br>8.151<br>0.82*                                     | 12.110<br>18,900<br>0,82 <sup>-</sup> | 0,000<br>0,000<br>0,000                           | 5.210<br>8.131<br>0.82°                           | 12 110<br>18,900<br>0,82 <sup></sup> | VE-                                                | AND SEAL 22967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |
| Width (Whkfp Whkf)<br>40. Pool Cross Sectional Area, eq 0<br>Areads                                           | Monimum:<br>Maximum:<br>Mean:<br>Mean:  | 1.30 <sup>-</sup><br>1.30 <sup>-</sup><br>86.535<br>-0.480 | 9,654<br>1,020<br>49,158<br>36,585    | 0.654<br>1.620<br>28.593<br>21.280                  | 9,4°2<br>0,880<br>4,660<br>4,620                         | 0.654<br>1.020<br>4.727<br>3.518                 | 28,593                               | 1.270<br>1.254<br>85.3(4)<br>76.350      | 1.020<br>1.1546<br>53.170                 | 0.654                                 | 1,145<br>1,769<br>152,195                 | 0,654<br>1,020<br>94,534                     | 0.654 1.020 28.593                   | 0.686                                 | 0.654<br>1.020<br>10.399                  | 0.654<br>1.020<br>28.593             | 10,000<br>10,000<br>0,000                | 0.654<br>1.020<br>4.121                                     | 0.654<br>1.020<br>28.593              | 0.060<br>0.000<br>0.000                           | 0.654<br>1.020<br>4.727                           | 0.654<br>1.020<br>28.593             | 88<br>88<br>89<br>89<br>89<br>89<br>89<br>89<br>89 | 2 02/16/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
| Aproly<br>41. Ratio of Pool Ares to Bankfull<br>Ruffe Ares Apoul Ahkf                                         | Meaneure<br>Meaneure<br>Meane           | 102,590<br>1.411<br>1.149                                  | 36.585<br>66, "39<br>0.945<br>0.704   | 21.280<br>38.820<br>                                | 4.620<br>4.°00<br>1.248<br>1.23°                         | 3.518<br>6.11<br>0.945<br>0.704                  | 21.285<br>38.826<br>0.945<br>0.704   | -6.250<br>94.350<br>1.116<br>0.998       | 53.1°0<br>9°.512<br>0.945<br>0.°01        | 21.280<br>38.820<br>0.945<br>0.764    | 12*.990<br>1*6,400<br>1.4*6<br>1.241      | -0.355<br>128.345<br>0.945<br>9,704          | 21.280<br>38,820<br>0.945<br>0.704   | 10.430<br>23,350<br>1.231<br>0.156    | 39<br>11.113<br>0.945<br>0.104            | 21.280<br>38.820<br>0.945<br>0.744   | 1,060<br>1,060<br>1,000<br>1,000         | 3.518<br>1641<br>16.945<br>16.764                           | 21,280<br>38,820<br>0,945<br>0,704    | 0.000<br>0.000<br>0.000                           | 3.518<br>6.41"<br>0.915<br>0.561                  | 21.280<br>38.820<br>0.945            |                                                    | Contraction of the second of t |                                                                                             |
| <ol> <li>Pool to Pool Spacing. If (p-p)</li> </ol>                                                            | Mosimone<br>Mean:<br>Mosimone           | 1,673<br>540,940<br>50,620                                 | 1.283                                 | 1.283<br>78.860<br>50.300                           | 1,258                                                    | 1.253<br>33.925<br>21.639                        | 1,283<br>58,860<br>50,300            | 1,235<br>205,685<br>38 699               | 1.263<br>132.265<br>84.361                | 1.283<br>78.860<br>50.300             | 1,243<br>3,710<br>1,49,760<br>64,679      | 1.283<br>151.°19<br>96.°°2                   | 1.283<br>TB.860<br>50.300            | 0. 56<br>1,707<br>113.240<br>83,130   | 1.283<br>49.922<br>31.842                 | 1,283<br>78,860<br>50,300            | 0000<br>0000<br>0000                     | 1.263<br>33.925<br>21.639                                   | 1.283<br>*8.860<br>50.300             | 0.000                                             | 0."64<br>1.283<br>33.925<br>21.639                | 0,704<br>1.283<br>~8.860<br>50.300   |                                                    | SCOTT SUNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| <ol> <li>Kata of p-p Spacing to Bankfull<br/>Width (p-p Whkf)</li> </ol>                                      | Mazimentz<br>Meanz<br>Minimentz         | 402.570<br>7.647<br>2.747                                  | 1-16,83"<br>-1.25"<br>2."15           | 105.840<br>4.25<br>2 15                             | 0,050<br>0,600<br>6,000                                  | 45.532<br>4.25<br>2 15                           | 105.840<br>4.25°<br>2.°15            | 442.449<br>8.435<br>1.58 <sup>-</sup>    | 1***.51*<br>1.25*<br>2 * 15               | 105.840<br>4.25°<br>2.°15             | 292.540<br>4.934<br>2.130                 | 203.620<br>1.257<br>2.715                    | 105.840<br>4.25<br>2.15              | 165,660<br>10,120<br>7,429            | 67,601<br>4.257<br>2.715                  | 105.840<br>4,25°<br>2.°15            | 6090<br>6090<br>6090                     | 45.532<br>4.257<br>2.715                                    | 4.25"<br>2."15                        | 0,000<br>0,000<br>0,000                           | 45.532<br>4.25 <sup>-</sup><br>2. <sup>-</sup> 15 | 105.840<br>4.25<br>2.715             |                                                    | ***1##13**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
| 41. Pool Length, fi (Lp)                                                                                      | Maximume<br>Mean:<br>Minimuma:          | 21.843<br>39.340<br>11.350                                 | 5.*1-1<br>-18.*10<br>-25.4-14         | 5.714<br>35.110<br>18.340                           | 0,000<br>0.000<br>0.000                                  | 5.11<br>35.164<br>7.890                          | 5,*14<br>35 110<br>18 3 10           | 18,144<br>12,000<br>8,520                | 5."54<br>58.88"<br>30."60                 | 5.*14<br>35.110<br>18.349             | 9.63<br>48.590<br>20.530                  | 5.°14<br>6°.548<br>35.284                    | 5,713<br>35,110<br>18,340            | 14.804<br>31.820<br>11.130            | 5.°14<br>22.236<br>11.610                 | 5.714<br>35.110<br>18.340            | 0,000<br>0.000<br>0.000                  | 5.714<br>15.4%4<br>7.890                                    | 5.734<br>35.140<br>18.340             | 0.000<br>0.000<br>0.000                           | 5,714<br>15,104<br>7,890                          | 5.°14<br>35.110<br>18.340            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
| 45. Rates of Poel Length to Bankfull<br>1p Whkf                                                               | Maximuma<br>Mean:<br>Monimuma           | 87,940<br>2,135<br>0,616                                   | 87.222<br>1.895<br>0.990              | 62.8"0<br>1.895<br>0.220                            | 0,090<br>0,090<br>0,090                                  | 21.047<br>1.895<br>6.990                         | 63.5"0<br>1 \$25<br>0,290            | 137,060<br>1,722<br>0,349                | 105,14"<br>1.895<br>1.096                 | 62.870<br>1.695<br>0.996              | \$1,010<br>1.691<br>0.616                 | 120,956<br>1,895<br>0,990                    | 62.5°0<br>1.895<br>0.990             | 65,410<br>2,844<br>1,553              | 39,"99<br>1.895<br>0.990                  | 62.8°0<br>1.875<br>0.970             | 6,666<br>11,646<br>11,666                | 2".04"<br>1,825<br>0.990                                    | 62.8°0<br>1.895<br>0.990              | 6,060<br>6,000<br>6,000                           | 27.047<br>1.895<br>0.990                          | 62.8°0<br>1.895<br>0.990             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |
|                                                                                                               | Maximum                                 | 4.**2                                                      | 3,394                                 | 3.394                                               | 4000                                                     | 3,394                                            | 3.394                                | 3,621                                    | 3.394                                     | 3,394                                 | 2. 68                                     | 3,394                                        | 3,394                                | 5.8-15                                | 3,394                                     | 3.394                                | nung                                     | 3,391                                                       | 3.394                                 | 11,18.01                                          | 3.394                                             | 3,394                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥at.                                                                                        |

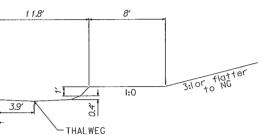


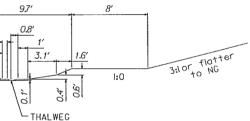
÷


·<u></u>···



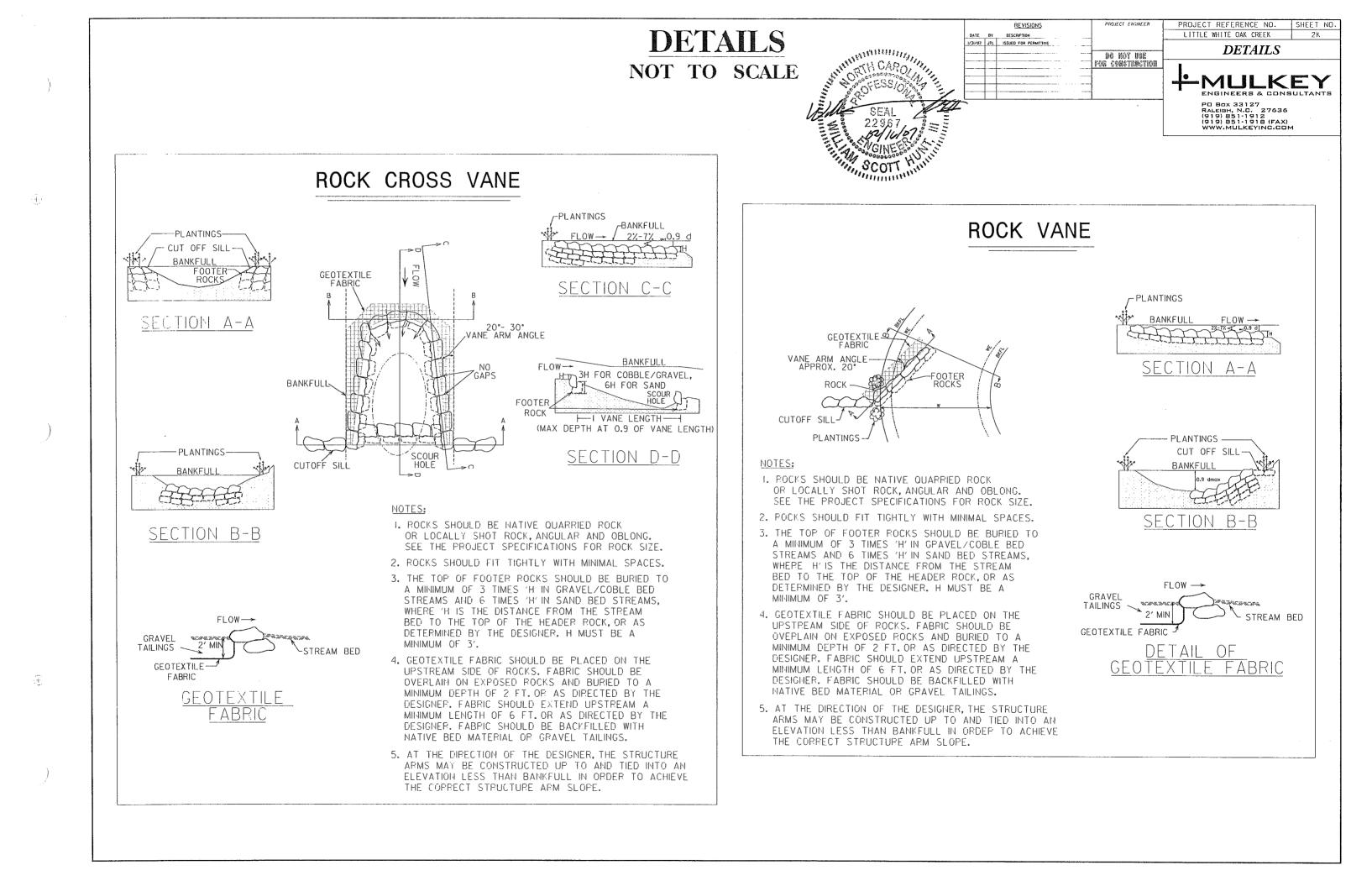


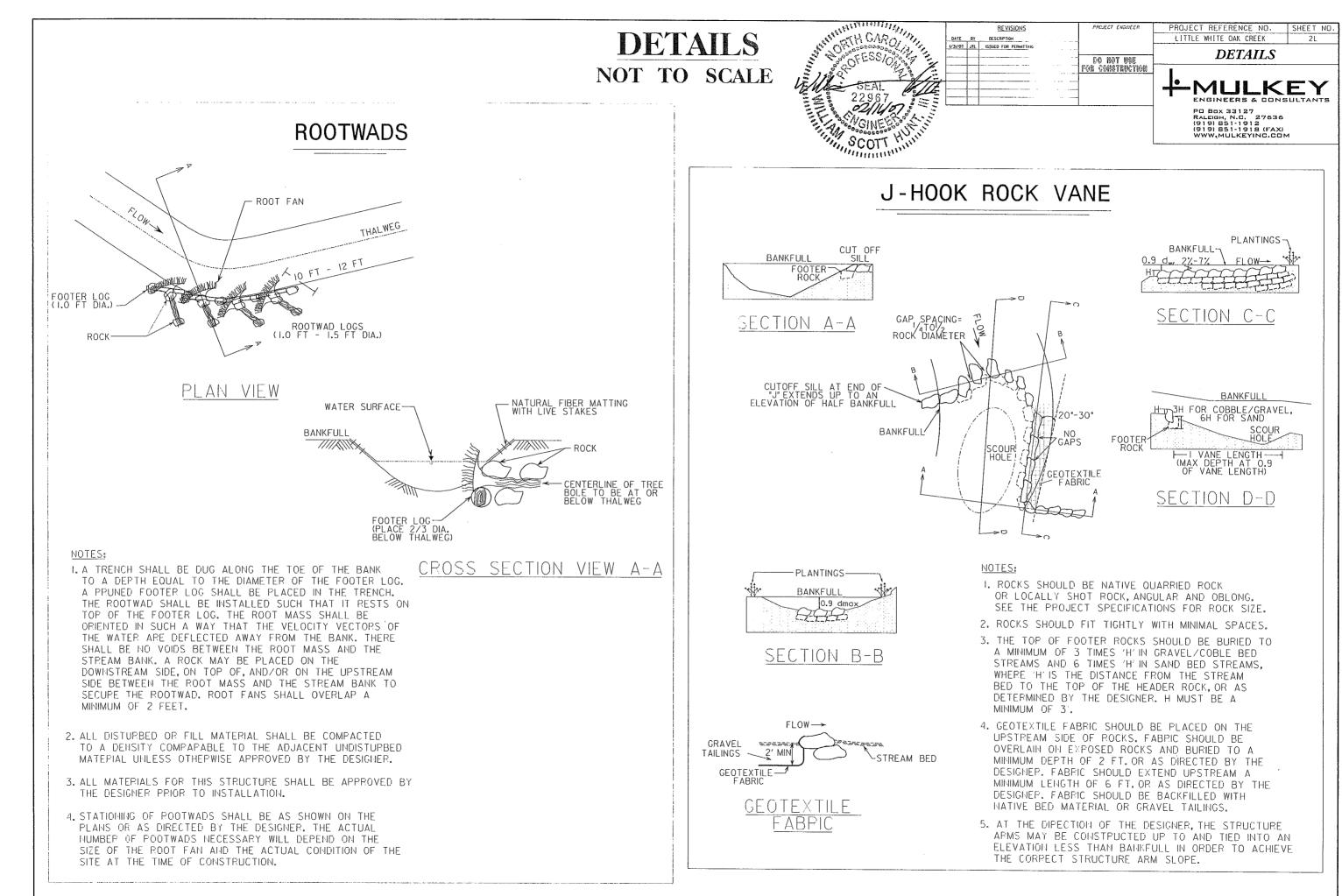


+ .


TYPICAL POOL RIGHT BANKFULL CROSS SECTIONAL AREA = 4.7 SQ.FT.

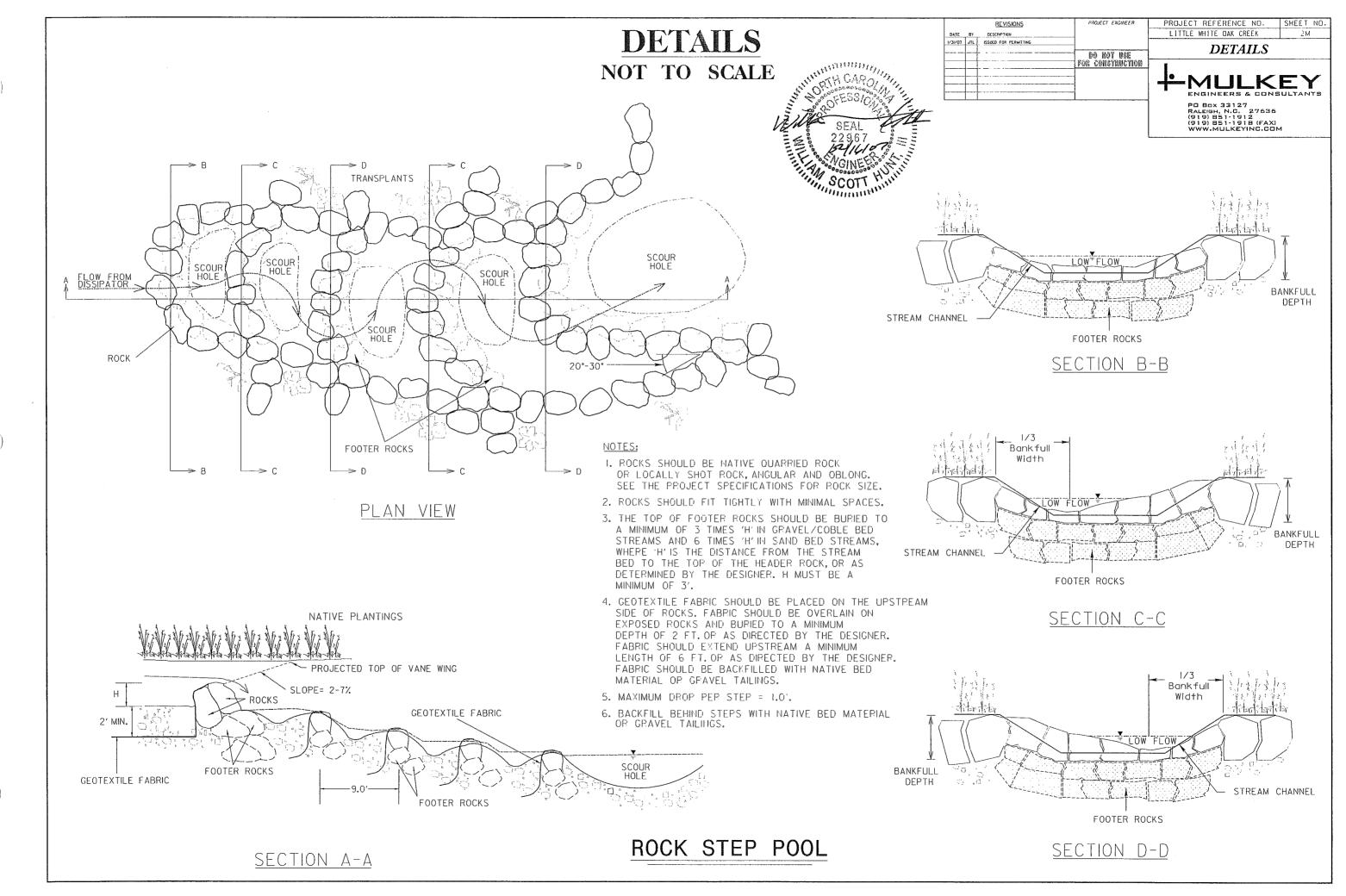





R2A

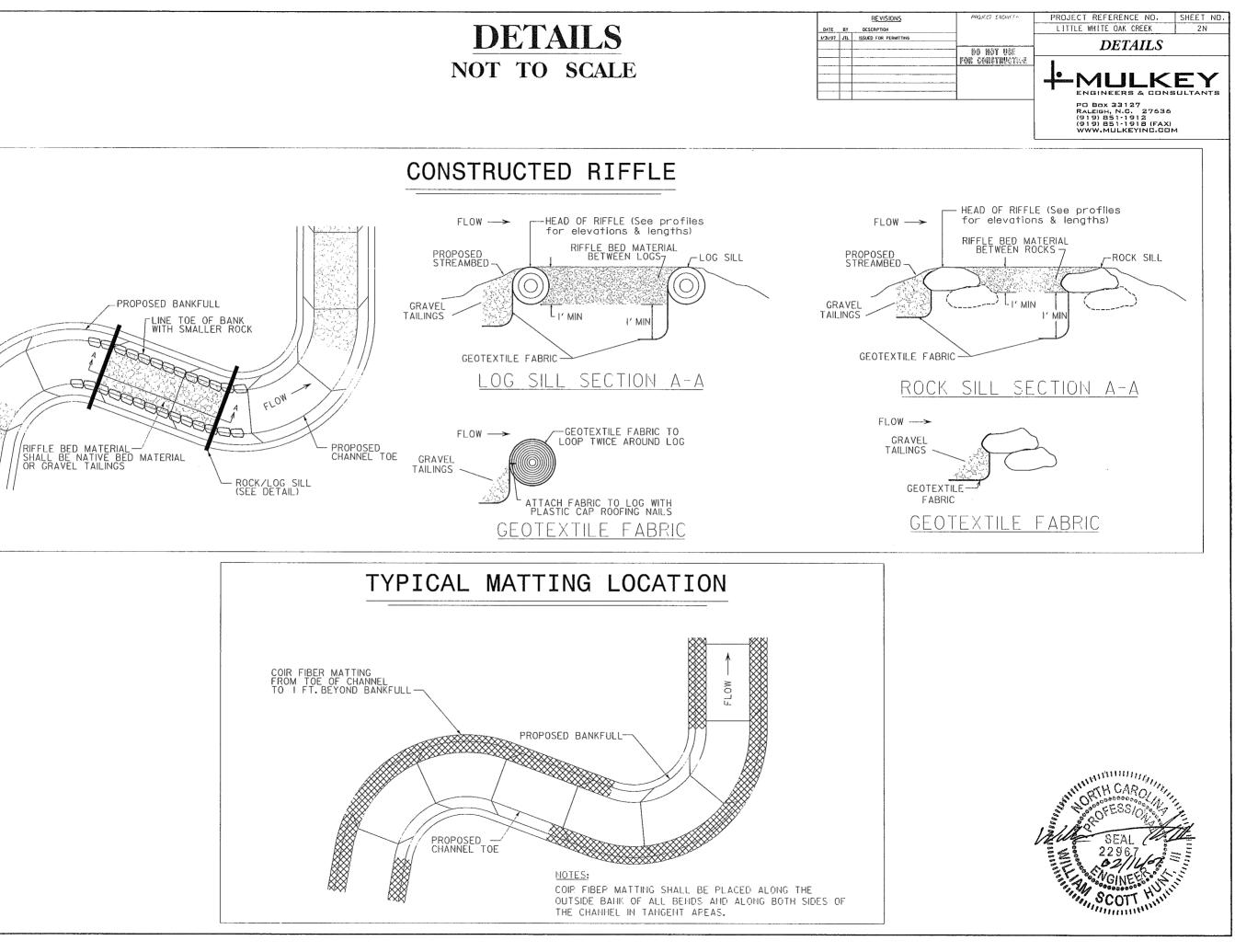






TYPICAL POOL LEFT BANKFULL CROSS SECTIONAL AREA = 10.4 SQ.FT.

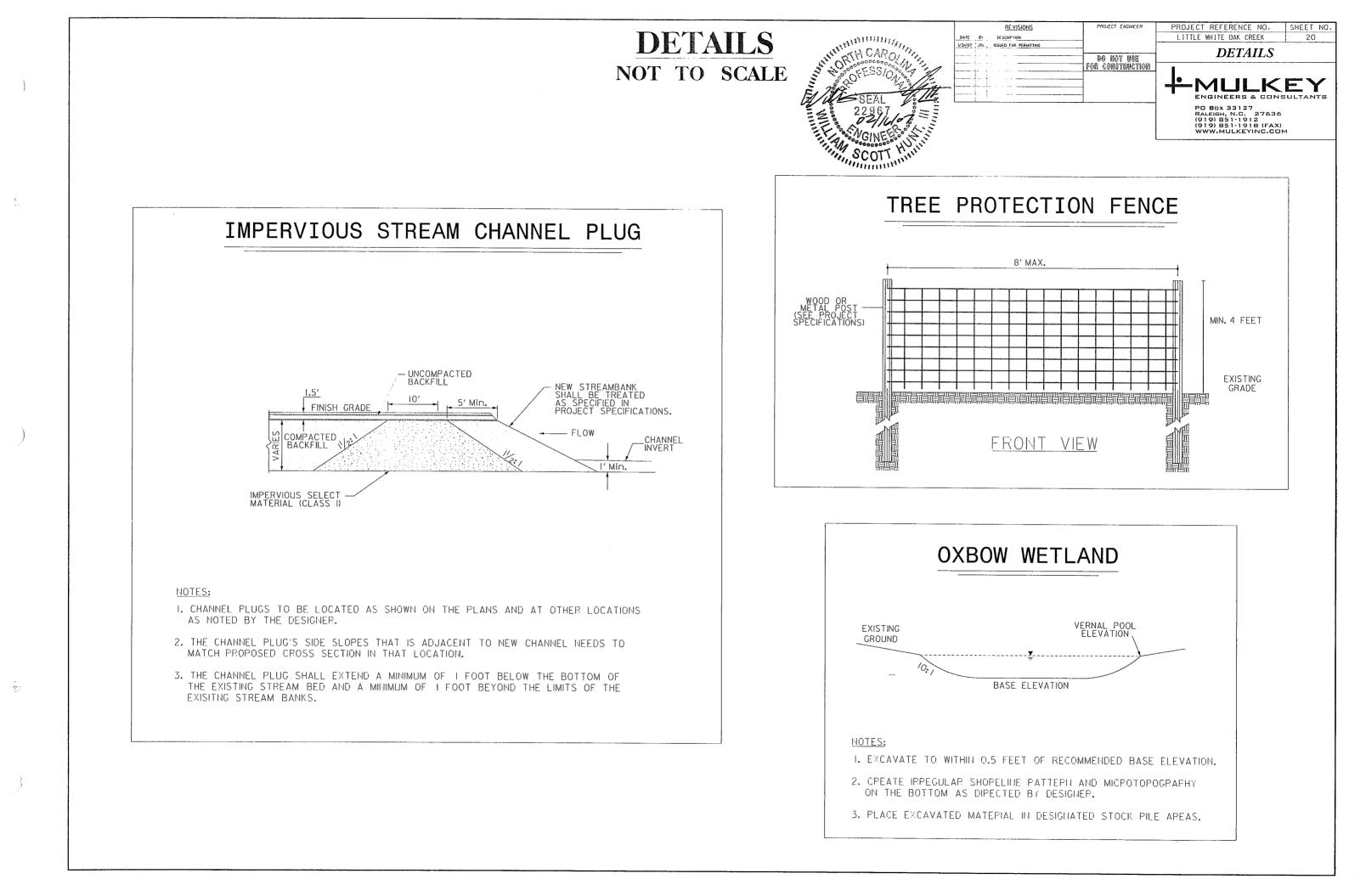
TYPICAL POOL RIGHT BANKFULL CROSS SECTIONAL AREA = 10.4 SQ.FT.



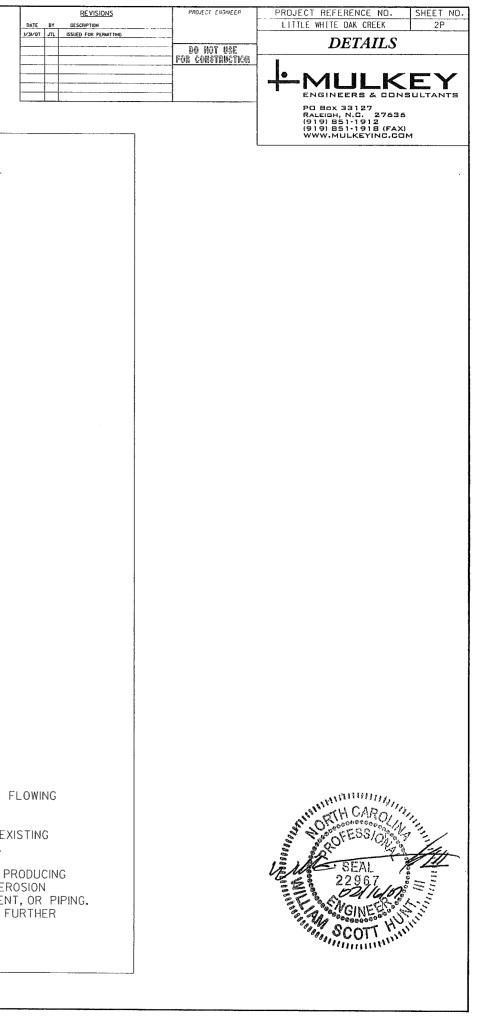


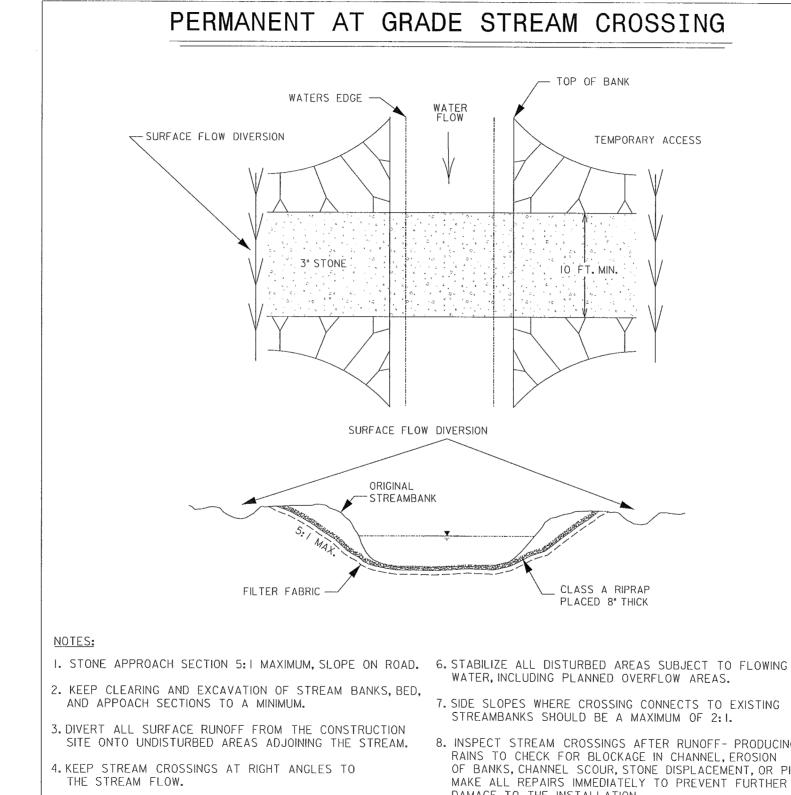

+




+

÷



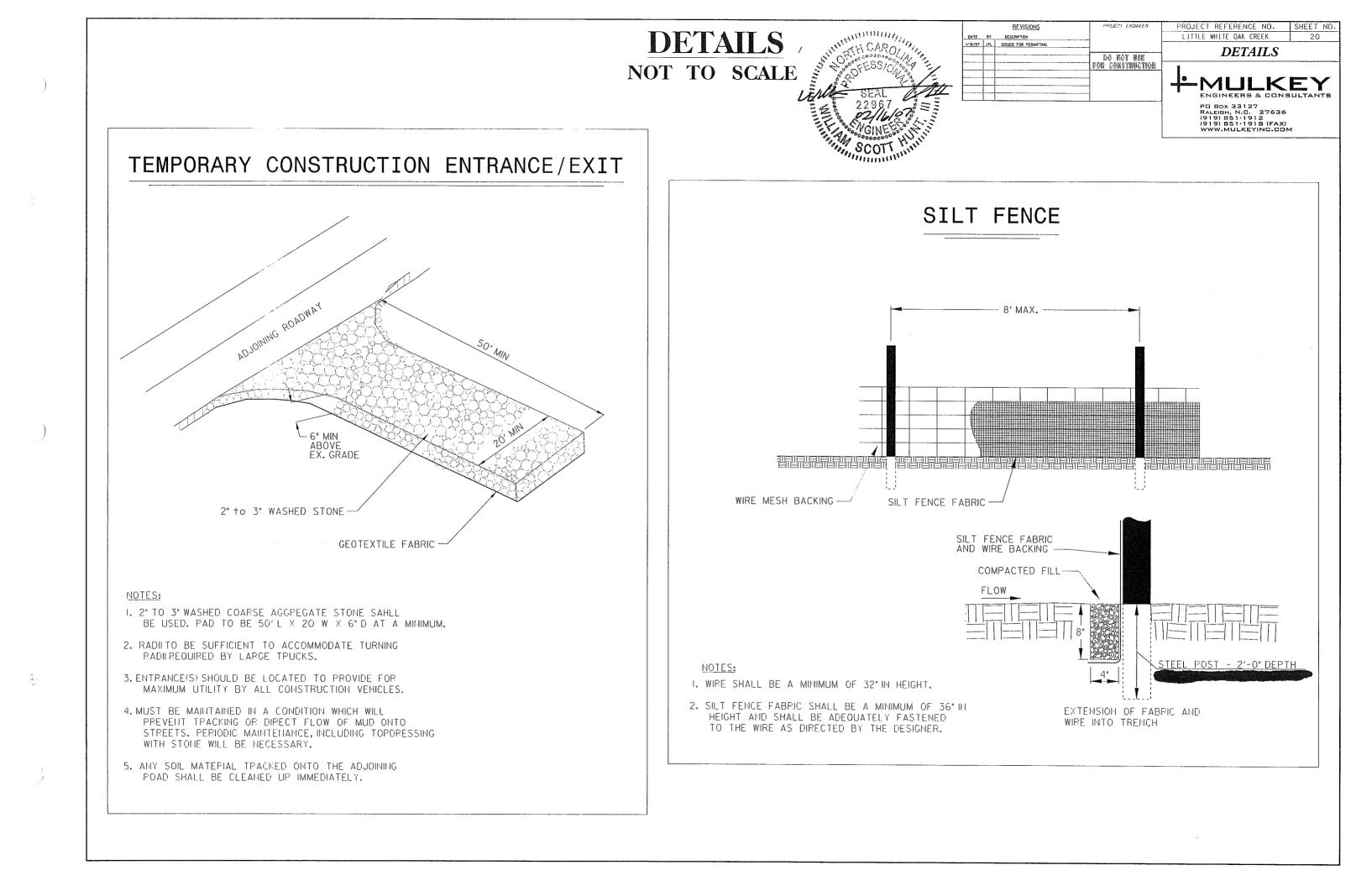


÷.

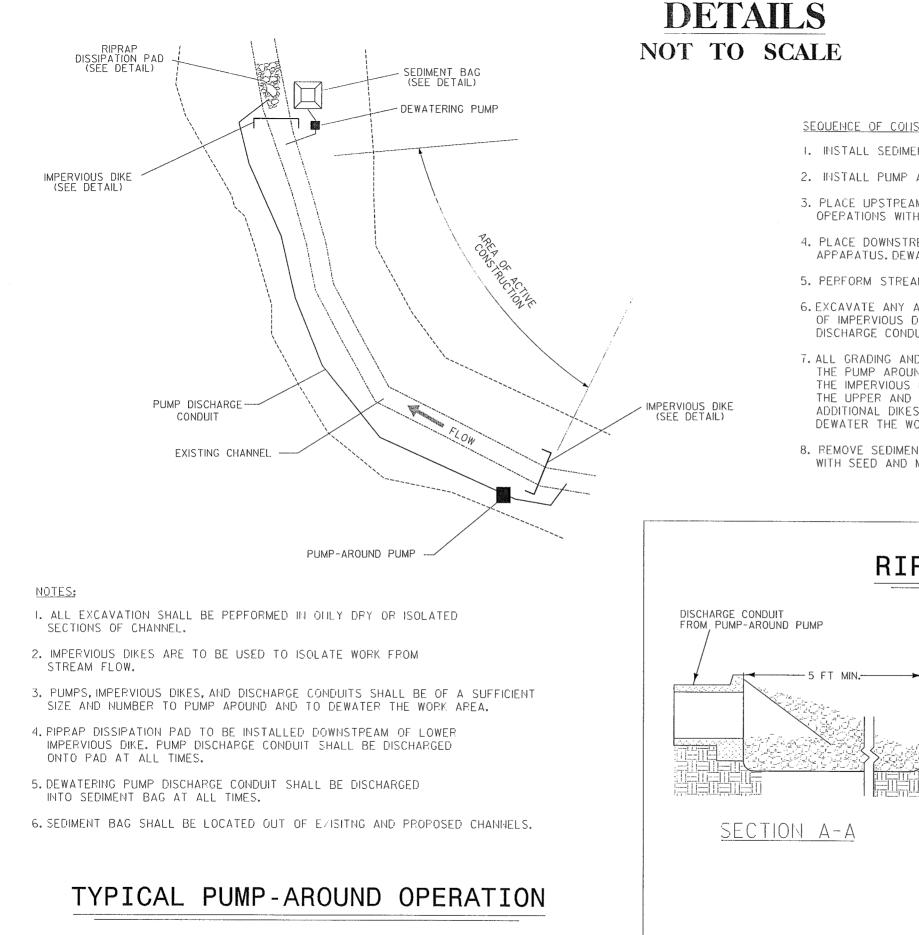
1



### DETAILS NOT TO SCALE





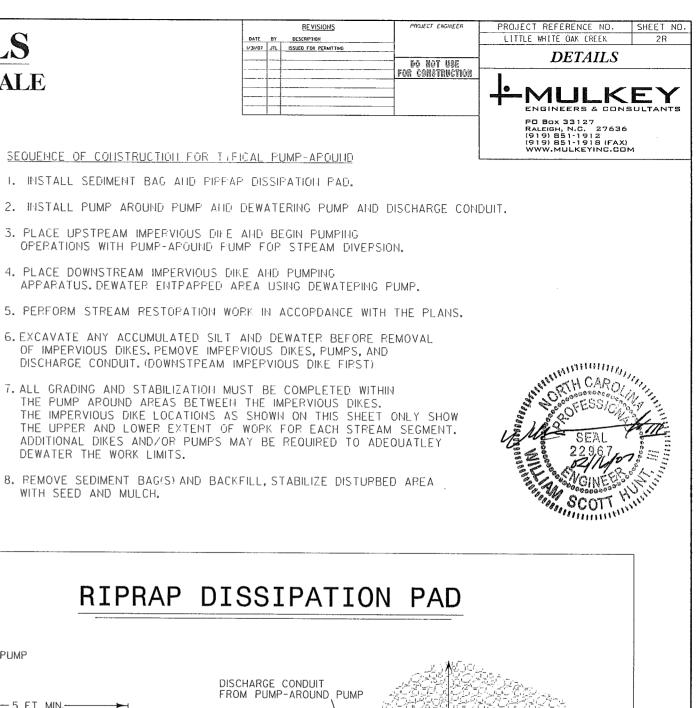


5. ALIGN ROAD APPROACHES WITH THE CENTER LINE OF THE CROSSING FOR A MINIMUM DISTANCE OF 30 FEET.

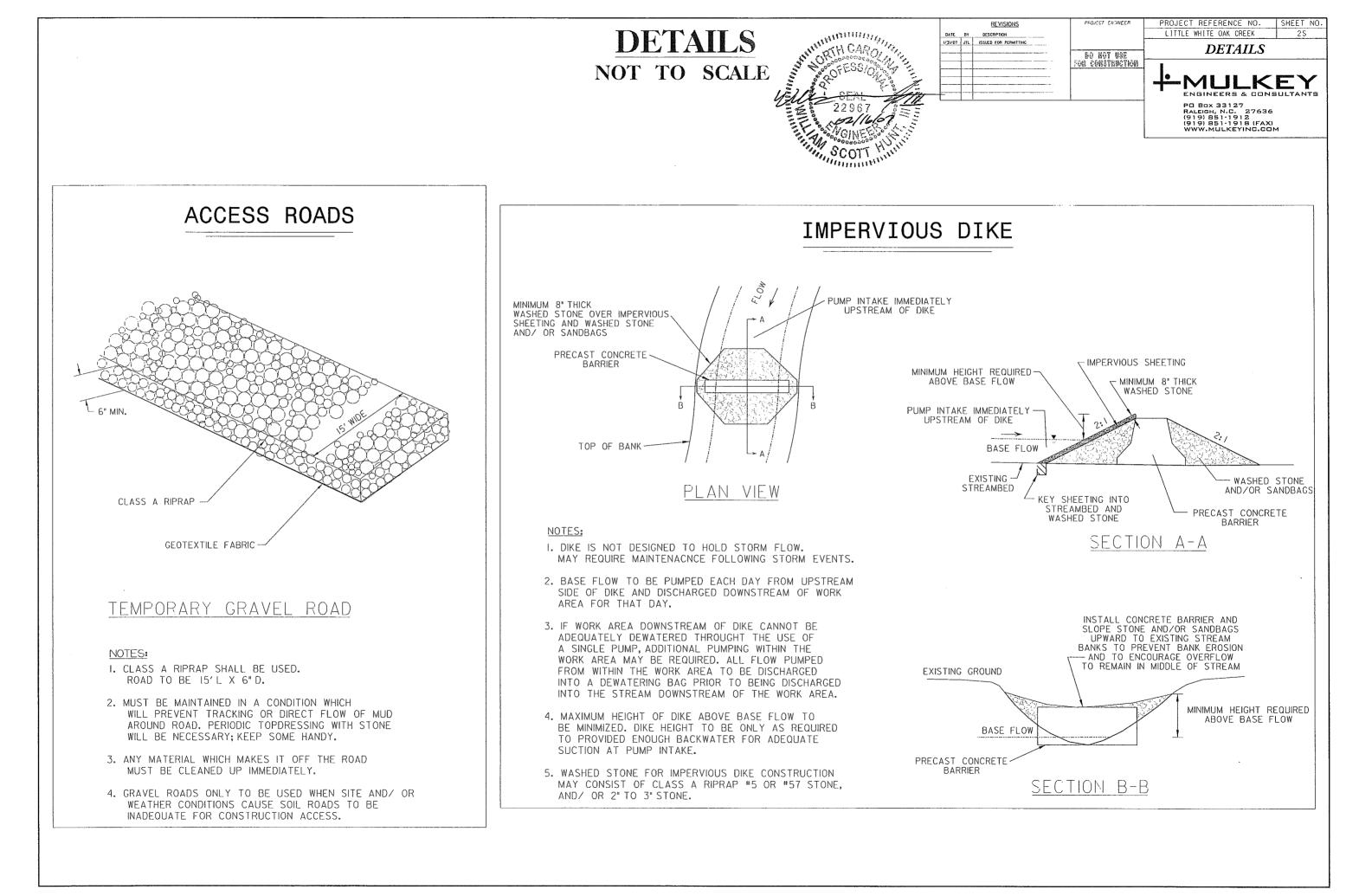
1

÷.

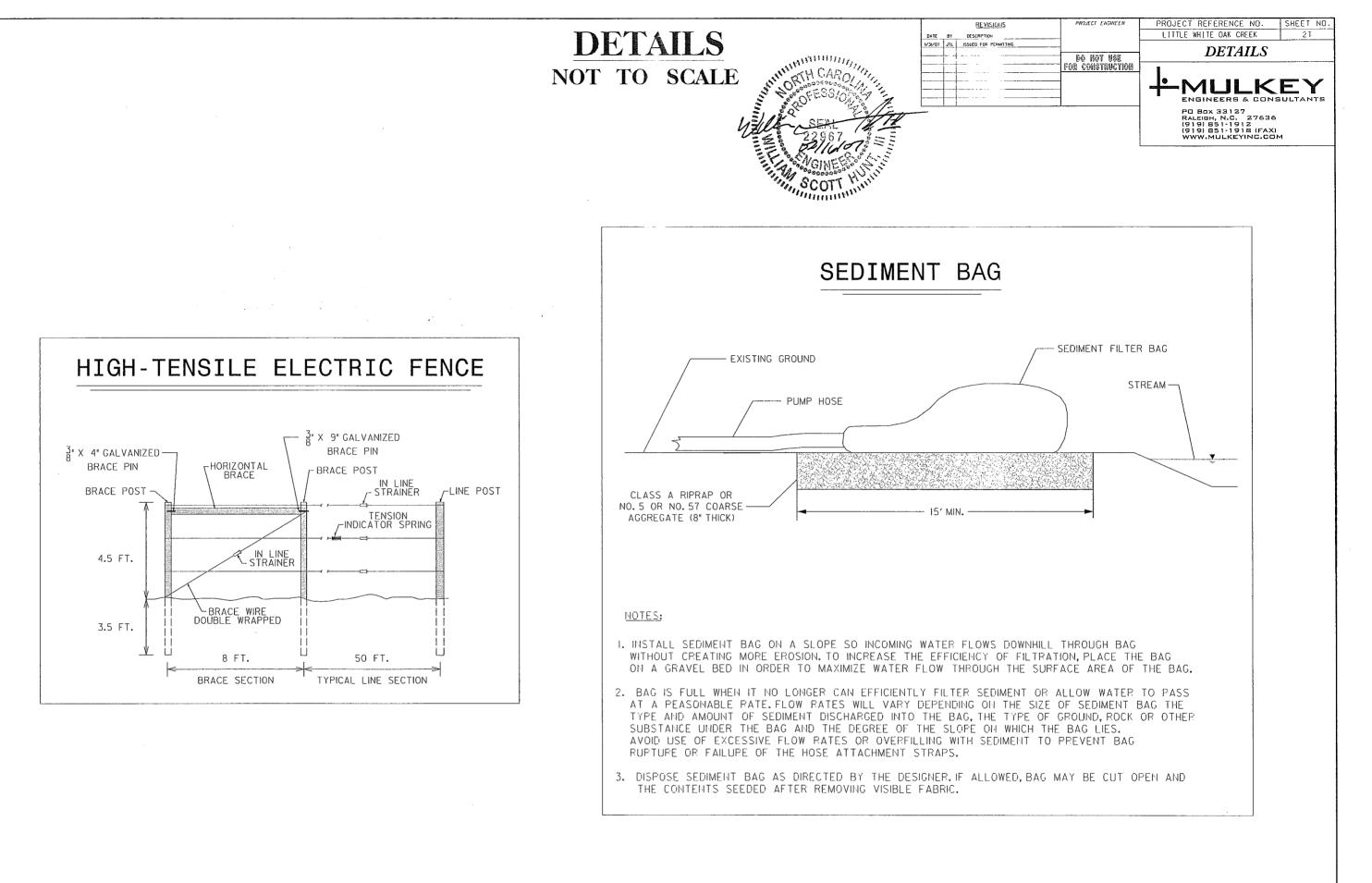
- 7. SIDE SLOPES WHERE CROSSING CONNECTS TO EXISTING STREAMBANKS SHOULD BE A MAXIMUM OF 2:1.
- 8. INSPECT STREAM CROSSINGS AFTER RUNOFF- PRODUCING RAINS TO CHECK FOR BLOCKAGE IN CHANNEL, EROSION OF BANKS, CHANNEL SCOUR, STONE DISPLACEMENT, OR PIPING. MAKE ALL REPAIRS IMMEDIATELY TO PREVENT FURTHER DAMAGE TO THE INSTALLATION.



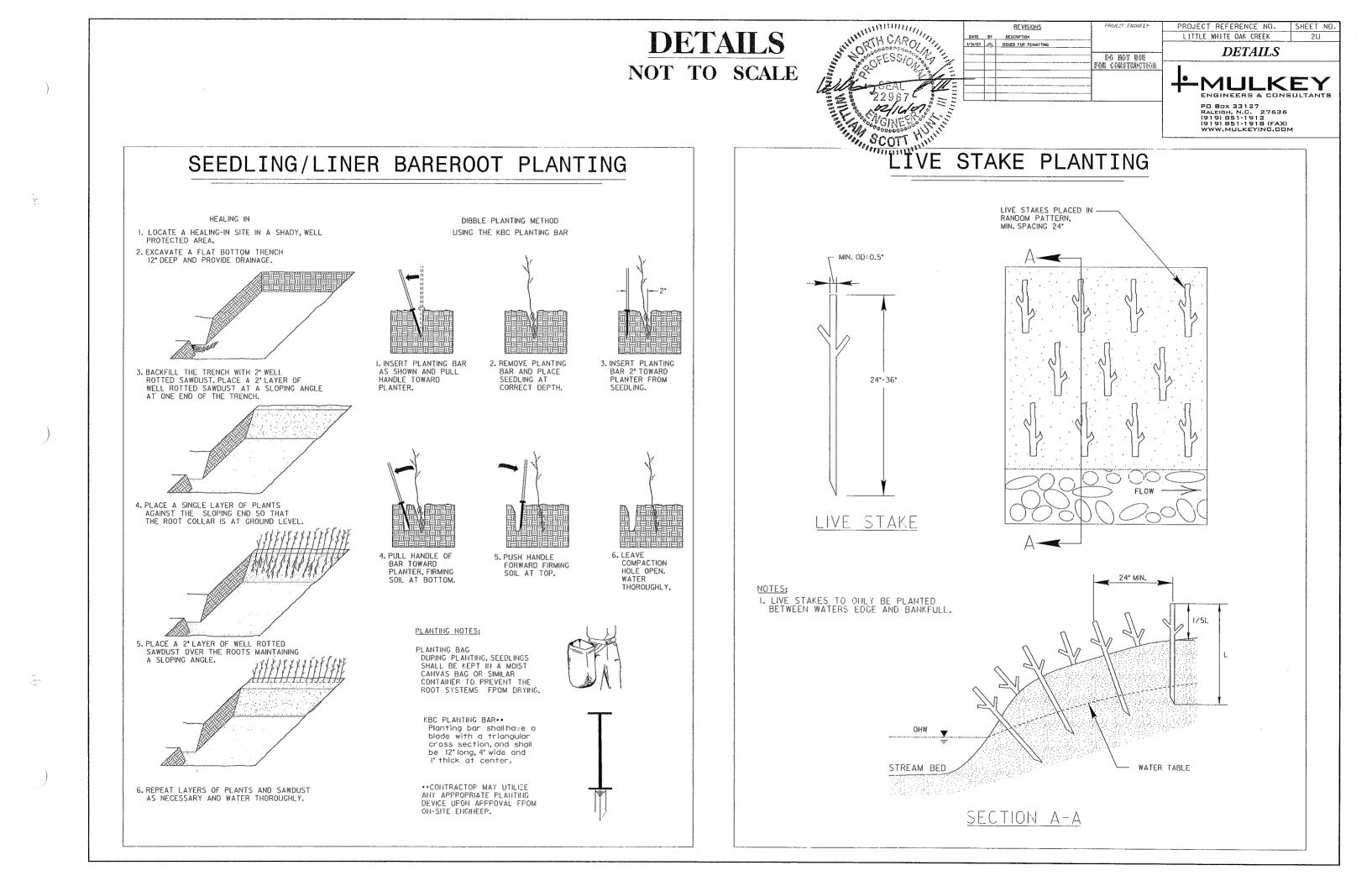




| DATE    | BY  |    |
|---------|-----|----|
| 1/31/07 | JTL | 15 |
|         |     |    |
|         |     |    |
|         |     |    |
|         |     |    |
|         |     |    |
|         |     |    |
|         |     |    |
|         |     |    |

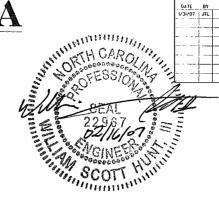
SEQUENCE OF CONSTRUCTION FOR THEICAL PUMP-APOUND


- I. INSTALL SEDIMENT BAG AND PIPPAP DISSIPATION PAD.
- 3. PLACE UPSTREAM IMPERVIOUS DIFE AND BEGIN PUMPING OPERATIONS WITH PUMP-APOUND FUMP FOR STPEAM DIVERSION.
- 4. PLACE DOWNSTREAM IMPERVIOUS DIKE AND PUMPING APPARATUS. DEWATER ENTPAPPED AREA USING DEWATERING PUMP.
- 5. PERFORM STREAM RESTORATION WORK IN ACCOPDANCE WITH THE PLANS.
- 6. EXCAVATE ANY ACCUMULATED SILT AND DEWATER BEFORE REMOVAL OF IMPERVIOUS DIKES, PEMOVE IMPERVIOUS DIKES, PUMPS, AND DISCHARGE CONDUIT. (DOWNSTPEAM IMPERVIOUS DIKE FIRST)
- 7. ALL GRADING AND STABILIZATION MUST BE COMPLETED WITHIN THE PUMP AROUND AREAS BETWEEN THE IMPERVIOUS DIKES. THE IMPERVIOUS DIKE LOCATIONS AS SHOWN ON THIS SHEET ONLY SHOW THE UPPER AND LOWER EXTENT OF WORK FOR EACH STREAM SEGMENT. ADDITIONAL DIKES AND/OR PUMPS MAY BE REQUIRED TO ADEQUATLEY DEWATER THE WORK LIMITS.
- 8. REMOVE SEDIMENT BAG(S) AND BACKFILL, STABILIZE DISTURBED AREA WITH SEED AND MULCH.









÷



÷



# PROPOSED PROFILE DATA



**R1** 

|                      | Thalweg            | ÷             |                      | Thalweg            |                |                                                | Thalweg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                      | Thalweg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
|----------------------|--------------------|---------------|----------------------|--------------------|----------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Station              | Elevation          | Feature       | Station              | Elevation          | Feature        | Station                                        | Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Feature         | Station              | Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Feature         |
| 0+00                 | 884.48'            | Riffle        | 18+13.89             | 879.83'            | Glide          | 37+64.89                                       | 874.14'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D           | 57+37.89             | 870.24'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run             |
| 0+25                 | 884.06'            | Run           | 18+49.89             | 879.95'            | Riffle         | 38+04.89                                       | 875.35'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide           | 57+77.89             | 869.60'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool            |
| 0+50                 | 883.44'            | Pool          | 18+64.89             | 879.57'            | Run            | 38+24.89                                       | 875.51'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle          | 58+12.89             | 868.93'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D           |
| 0+85                 | 882.74'            | MaxD          | 18+84.89             | 878.97             | Pool           | 38+49.89                                       | 875.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Run             | 58+42.89             | 870.16'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide           |
| 1+25                 | 883.92'            | Glide         | 19+19.89             | 878.29             | Max D          | 38+79.89                                       | 874.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pool            | 58+52.89             | 870.34'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle          |
| 1+47                 | 884.06             | Riffle        | 19+54.89             | 879.52             | Glide          | 39+14.89                                       | 873.81'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D           | 58+77.89             | 869.94'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run             |
| 1+77                 | 883.62'            | Run           | 19+79.89             | 879.66'            | Riffle         | 39+49.89                                       | 875.03'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide           | 59+02.89             | 869.34'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool            |
| 2+12                 | 882.97             | Pool          | 20+04.89             | 879.25             | Run            | 39+74.89                                       | 875.17'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle          | 59+32.89             | 868.67'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D           |
| 2+42                 | 882.29'            | Max D         | 20+34.89             | 878.64'            | Pool           | 39+99.89                                       | 874.76'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run             | 59+62.89             | 869.91'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide           |
| 2+72                 | 883.50             | Glide         | 20+74.89             | 877.95'            | Max D          | 40+29.89                                       | 874.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pool            | 59+82,89             | 870.07'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle          |
| 2+92                 | 883.64'            | Riffle        | 21+14.89             | 879,16'            | Glide          | 40+71.89                                       | 873.45'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D           | 60+12.89             | 869,65'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run             |
| 3+17                 | 883.22             | Run           | 21+44.89             | 879.29'            | Riffle         | 41+13.89                                       | 874.66'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide           | 60+47.89             | 869.03'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool            |
| 3+42                 | 882.60'            | Pool          | 21+74.89             | 878.87'            | Run            | 41+43.89                                       | 874.79'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle          | 60+87.89             | 868.34'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D           |
| 3+72                 | 881.92'            | Max D         | 22+04.89             | 878.25'            | Pool           | 41+63.89                                       | 874.40'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run             | 61+22.89             | 869.57'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide           |
| 4+02                 | 883.13'            | Glide         | 22+44.89             | 877.56'            | Max D          | 41+88.89                                       | 873.79'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool            | 61+47.89             | 869.72'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle          |
| 4+17                 | 883.29'            | Riffle        | 22+89.89             | 878.76'            | Glide          | 42+18.89                                       | 873.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max D           | 61+72.89             | 869.31'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run             |
| 4+37                 | 882.88'            | Run           | 23+25.89             | 878.88'            | Riffle         | 42+53.89                                       | 874.34'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide           | 61+92.89             | 868.72'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool            |
| 4+57                 | 882.27'            | Pool          | 23+40.89             | 878.50'            | Run            | 42+78.89                                       | 874.49'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle          | 62+27.89             | 868,05'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D           |
| 4+72                 | 881.63'            | Max D         | 23+60.89             | 877.90'            | Pool           | 43+08.89                                       | 874.07'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run             | 62+57.89             | 869.28'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide           |
| 4+87                 | 882.89'            | Glide         | 23+88.89             | 877.24'            | Max D          | 43+43.89                                       | 873.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pool            | 62+72.89             | 869.45'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle          |
| 4+97                 | 883.06'            | Riffle        | 24+16.89             | 878.48'            | Glide          | 43+73.89                                       | 872.77'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D           | 62+92.89             | 869.06'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run             |
| 5+17                 | 882.65'            | Run           | 24+28.89             | 878.65'            | Riffle         | 44+03.89                                       | 874.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Glide           | 63+17.89             | 868.46'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool            |
| 5+37                 | 882.04'            | Pool          | 24+63.89             | 878.22'            | Run            | 44+28.89                                       | 874.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Riffle          | 63+59.89             | 867.77'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D           |
| 5+62                 | 881.37'            | Max D         | 25+08.89             | 877.57'            | Pool           | 44+55.89                                       | 873.74'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run             | 64+04.89             | 868.97'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide           |
| 5+87                 | 882.60'            | Glide         | 25+48.89             | 876.88'            | Max D          | 44+87.89                                       | 873.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pool            | 64+34.89             | 869.11'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffe           |
| 5+96.92              | 882.77             | Riffle        | 25+88.89             | 878.09             | Glide          | 45+16.89                                       | 872.45'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D           | 65+22.89             | 868.57'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run             |
| 6+21.92              | 882.36             | Run           | 26+16.89             | 878.23             | Riffle         | 45+51.89                                       | 873.67'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide           | 65+52.89             | 867.96'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool            |
| 6+51.92              | 881.75             | Pool          | 26+46.89             | 877.81'            | Run            | 45+63.89                                       | 873.85'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle          | 65+97.89             | 867.26'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D           |
| 6+86.92              | 881.07             | Max D         | 26+66.89             | 877.21'            | Pool           | 46+05.89                                       | 873.40'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run             | 66+37.89             | 868.48'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide           |
| 7+11.92              | 882.31'            | Glide         | 26+96.89             | 876.55             | Max D          | 46+53.89                                       | 872.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pool            | 66+62,89             | 868.63'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle          |
| 7+36.92              | 882.46             | Riffle        | 27+31.89             | 877.77             | Glide          | 47+18.89                                       | 872.00'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D           | 66+87.89             | 868.22'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run             |
| 7+61.92              | 882.05             | Run           | 27+56.89             | 877.91             | Riffle         | 47+83.89                                       | 873.15'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide           | 67+12.89             | 867.62'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool            |
| 7+91.92              | 881,43'            | Pool          | 27+76.89             | 877.52             | Run            | 48+18.89                                       | 873.27'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle          | 67+52.89             | 866.93'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D           |
| 8+26.92              | 880,75             | Max D         | 28+01.89             | 876.91'            | Pool           | 48+82.89                                       | 872.74'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run             | 67+92.89             | 868.15'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide           |
| 8+56.92              | 881.99'            | Glide         | 28+41.89             | 876.22             | Max D          | 49+42.89                                       | 872.03'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool            | 68+17.89             | 868.30'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle          |
| 8+81.92              | 882.13             | Riffe         | 28+81.89             | 877.43             | Glide          | 49+49.89                                       | 871.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max D           | 68+47.89             | 867.88'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run             |
| 9+01.92              | 881.73'<br>881.13' | Run           | 29+01.89             | 877.58             | Riffle         | 49+58.89                                       | 872.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Glide           | 68+79,89             | 867.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pool            |
| 9+26.92              | 880.46             | Pool<br>May D | 29+36.89             | 877.16             | Run            | 49+68.89                                       | 872.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Riffle          | 69+04.89             | 866.61'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D           |
| 9+56.92              | 881,69'            | Max D         | 29+76.89             | 876.52             | Pool           | 49+93,89                                       | 872.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Run             | 69+29.89             | 867.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Glide           |
| 9+86.92              | 881.85'            | Glide         | 30+16.89<br>30+56.89 | 875.83             | Max D          | 50+13,89                                       | 871.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pool            | 69+53.89             | 868.01'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle          |
| 10+06.92<br>10+31.92 | 881.44'            | Riffle<br>Run | 30+36.89             | 877.04'<br>877.17' | Glide          | 50+38.89<br>50+68.89                           | 871.16'<br>872.38'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Max D           | 69+73.89             | 867.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Run             |
| 10+61.92             | 880,82'            | Pool          | 31+01.89             | 876.78             | Riffle         | 50+86.89                                       | 872.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Glide           | 69+93.89             | 867.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pool            |
| 11+01.92             | 880.13             | Max D         | 31+16.89             | 876.20             | Run            | 51+06.89                                       | 872.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Riffle          | 70+33.89             | 866.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max D           |
| 1+31.92              | 881,37'            | Glide         | 31+41.89             | 875.54             | Pool<br>Max D  | 51+36.89                                       | 871.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Run<br>Pool     | 70+68.89<br>70+83.89 | 867.56'<br>867.73'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Glide           |
| 11+46.92             | 881.53             | Riffle        | 31+69,89             | 876.78             | Glide          | 51+76.89                                       | 870.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max D           | 71+18.89             | 867.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Riffle          |
| 11+76.92             | 881.12'            | Run           | 31+89.89             | 876.94'            | Riffle         | 52+21.89                                       | 871.96'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide           | 71+48.89             | 866.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Run             |
| 2+06.92              | 880.50             | Pool          | 32+77.89             | 876.39'            | Run            | 52+56.89                                       | 872.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Riffle          | 71+83.89             | 866.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pool            |
| 12+48.92             | 879,80'            | Max D         | 32+87.89             | 875.82'            | Pool           | 52+81.89                                       | 871.66'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run             | 72+13.89             | 867.26'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D           |
| 12+40.92             | 881.01'            | Glide         | 33+17.89             | 875.15'            | Max D          | 53+01.89                                       | 871.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pool            | 72+13.89             | 867.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Glide<br>Riffle |
| 13+15.92             | 881.15             | Riffle        | 33+47.89             | 876.38'            | Glide          | 53+21.89                                       | 870.43'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D           | 72+53.89             | 867.02'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ÷               |
| 3+40.92              | 880.75             | Run           | 33+62.89             | 876.55'            | Riffle         | 53+41.89                                       | 871.69'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide           | 72+33.89             | 866.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Run             |
| 13+70.92             | 880,13             | Pool          | 33+92.89             | 876.13             | Run            | 53+61.89                                       | 871.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Riffle          | 73+08.89             | 865,76'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool<br>Max D   |
| 14+07.92             | 879.45             | Max D         | 34+27.89             | 875.50'            | Pool           | 54+03.89                                       | 871,41'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run             | 73+38.89             | 866,99'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide           |
| 14+44.92             | 880.66'            | Glide         | 34+57.89             | 874.83'            | Max D          | 54+51.89                                       | 870.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pool            | 73+58.89             | 867.15'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle          |
| 4+44.92              | 880.78             | Riffle        | 34+87.89             | 876.07             | Glide          | 54+96.89                                       | 870.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max D           | 73+58.89             | 866.77'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| 14+80.92             | 880.28             | Run           | 35+12.89             | 876.21'            | Riffle         | 55+38.89                                       | 871.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Glide           | 73+88.89             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Run             |
| 5+63.89              | 879.70'            | Pool          | 35+42.89             | 875.79'            |                | 55+74.89                                       | a construction of the cons |                 |                      | 866,19'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool<br>Max D   |
| 15+98.89             | 879.02'            | Max D         | 35+72.89             | 875.18             | Run<br>Pool    | 55+96.89                                       | 871.81'<br>870.89'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Riffle          | 74+13.89<br>74+38.89 | 865.53'<br>866.78'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Max D           |
| 15+96.69             | 880.22             | Glide         | 36+14.89             | 874,48             |                | 56+21.89                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Run             |                      | Physiological Contract of Cont | Glide           |
| 16+68.89             | 880,36'            |               | 36+56.89             | 875.69             | Max D<br>Glide | 2 March 199 (199 (199 (199 (199 (199 (199 (199 | 869.93'<br>869.28'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pool<br>Max D   | 74+73.89             | 866.91'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle          |
| 17+03.89             | 879.93'            | Riffle        | 36+56.89             | 875.69             | Glide          | 56+46.89                                       | 869.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max D           | 75+15.89             | 866.47'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run             |
| 17+03.89             | 879.32'            | Run<br>Pool   | 30+00.89             | 875.43             | Riffle         | 56+86.89<br>57+02.89                           | 870.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Glide<br>Riffle | 75+57.89             | 865.83'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool<br>Max D   |
| 11720.09             | 013.32             |               | 51 TUZ.09            | 875.43             | Run            | JI TUZ.09                                      | 870.66'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rinie           | 76+43.89             | 865.05'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D           |

. +.

|                                   | Thalweg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |         | Thalweg   |         |                                       | Thalweg   |                                     | 1        | Thalweg   | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------|-----------|---------|---------------------------------------|-----------|-------------------------------------|----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tation                            | Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Feature                      | Station | Elevation | Feature | Station                               | Elevation | Feature                             | Station  | Elevation | Feature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0+00                              | 873,78'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D                        | 19+62   | 871.07    | Pool    | 39+14                                 | 868.56'   | Run                                 | 56+54    | 865.41    | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0+10                              | 874.50'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide                        | 20+12   | 870.41    | Max D   | 39+54                                 | 867.88'   | Pool                                | 56+74    | 865.69    | Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0+35                              | 875.42'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle                       | 20+62   | 871.88    | Glide   | 40+06                                 | 867.22'   | Max D                               | 56+94    | 864.88'   | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0+85                              | 874.68'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run                          | 20+92   | 872.13    | Riffle  | 40+58                                 | 868.69'   | Glide                               | 57+14    | 864.17'   | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1+35                              | 873.99'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool                         | 21+17   | 871.43    | Run     | 40+88                                 | 868.94'   | Riffle                              | 57+44    | 863.36'   | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1+85                              | 873.33'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D                        | 21+42   | 870,78    | Pool    | 41+28                                 | 868.22'   | Run                                 | 57+69    | 865.06'   | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2+35                              | 874.80'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide                        | 21+82   | 870.14    | Max D   | 41+68                                 | 867.54'   | Pool                                | 57+82    | 865.36'   | Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2+60                              | 875,06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Riffe                        | 22+22   | 871.62    | Glide   | 42+03                                 | 866.91'   | Max D                               | 58+12    | 864.52    | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3+00                              | 874.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Run                          | 22+42   | 871.89    | Riffle  | 42+38                                 | 868.40'   | Glide                               | 58+42    | 863.78    | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3+40                              | 873.67'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool                         | 22+82   | 871,17    | Run     | 42+53                                 | 868,68'   | Riffle                              | 58+82    | 862.94'   | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3+80                              | 873.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max D                        | 23+22   | 870.49    | Pool    | 42+83                                 | 867.97    | Run                                 | 59+22    | 864.60'   | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4+20                              | 874.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Glide                        | 23+72   | 869,83'   | Max D   | 43+13                                 | 867.31    | Pool                                | 59+42    | 864.90'   | Riffie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4+40                              | 874.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Riffle                       | 24+17   | 871.31'   | Glide   | 43+58                                 | 866.66'   | Max D                               | 60+02    | 864.02'   | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4+80                              | 874.05'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run                          | 24+42   | 871.57    | Riffle  | 43+98                                 | 868.14'   | Glide                               | 61+05    | 863.14'   | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5+20                              | 873.38'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool                         | 24+82   | 870.85'   | Run     | 44+18                                 | 868,41    | Riffle                              | 61+05    | 862.42    | * And the second sec |
| 5+60                              | 872.73'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D                        | 25+22   | 870.17    | Pool    | 44+53                                 | 867.70    | the ment of the statement of a long | 61+05    |           | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6+00                              | 874.22'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide                        | 25+72   | 869.51    | Max D   | 44+88                                 | 867.03    | Run                                 |          | 864.20'   | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6+20                              | 874.49'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle                       | 26+22   | 870.98    | Glide   | 44+00                                 | 866.39    | Pool                                | 61+05    | 864.54    | Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6+55                              | 873.77'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run                          | 26+42   |           |         | · · · · · · · · · · · · · · · · · · · |           | Max D                               | 61+35    | 863.75'   | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6+90                              | 873.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pool                         | 26+42   | 871.25    | Riffie  | 45+63                                 | 867.88    | Glide                               | 61+70    | 863.05'   | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7+35                              | CONTRACTOR INCOMENTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -meaning transferred and the |         | 870.52    | Run     | 46+03                                 | 868.12'   | Riffle                              | 62+10    | 862.27'   | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7+80                              | 872.45'<br>873.93'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Max D                        | 27+32   | 869.84    | Pool    | 46+48                                 | 867.38    | Run                                 | 62+45    | 863.99'   | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Contract of some second state and | A REAL PROPERTY AND ADDRESS OF ADDRESS OF ADDRESS ADDR | Glide                        | 27+82   | 869.18    | Max D   | 47+03                                 | 866.69'   | Pool                                | 62+60    | 864.31'   | Riffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7+90                              | 874.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Riffle                       | 28+32   | 870.65'   | Glide   | 47+53                                 | 866.03'   | Max D                               | 62+95    | 863.51'   | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8+20                              | 873.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Run                          | 28+44   | 870.93'   | Riffle  | 47+98                                 | 867.50'   | Glide                               | 63+30    | 862.81'   | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8+50                              | 872.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pool                         | 28+74   | 870.22    | Run     | 48+13                                 | 867.78    | Riffle                              | 63+90    | 862.00'   | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8+90                              | 872.21'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D                        | 29+04   | 869.56    | Pool    | 48+48                                 | 867.06    | Run                                 | 64+50    | 863.69'   | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9+35                              | 873.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Glide                        | 29+54   | 868.90'   | Max D   | 48+83                                 | 866.40'   | Pool                                | 64+70    | 864.00'   | Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9+60                              | 873.94'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle                       | 29+99   | 870.38    | Glide   | 49+18                                 | 865.76'   | Max D                               | 65+00    | 863.20'   | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0+10                              | 873.20'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run                          | 30+14   | 870.66'   | Riffe   | 49+53                                 | 867.26    | Glide                               | 65+30    | 862.51'   | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10+60                             | 872.51'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool                         | 30+49   | 869.94'   | Run     | 49+68                                 | 867.36    | Riffle                              | 65+75    | 861.72'   | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11+10                             | 871.85'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D                        | 30+84   | 869.28'   | Pool    | 49+88                                 | 866.58'   | Run                                 | 66+20    | 863.43'   | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11+50                             | 873.34'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide                        | 31+24   | 868.63'   | Max D   | 50+08                                 | 866.00'   | Pool                                | 66+40    | 863,74'   | Riffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11+70                             | 873.61'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle                       | 31+59   | 870.13'   | Glide   | 50+33                                 | 865.26'   | Max D                               | 66+65    | 862,96'   | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12+00                             | 872.90'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run                          | 31+71   | 870.41'   | Riffle  | 50+58                                 | 866.86'   | Glide                               | 66+90    | 862.27    | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12+35                             | 872.23'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool                         | 31+96   | 869,71'   | Run     | 50+70                                 | 867.20'   | Riffle                              | 67+40    | 861.48'   | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12+75                             | 871.59'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D                        | 32+21   | 869.06'   | Pool    | 50+90                                 | 866.42'   | Run                                 | 67+90    | 863.18'   | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13+15                             | 873.08'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide                        | 32+66   | 868.40'   | Max D   | 51+10                                 | 865,83'   | Pool                                | 68+10    | 863,49'   | Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13+35                             | 873.34'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle .                     | 33+06   | 869.89'   | Glide   | 51+46                                 | 865.08'   | Max D                               | 68+50    | 862.68'   | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13+80                             | 872.61'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run                          | 33+21   | 870.17    | Riffle  | 51+76                                 | 866.67'   | Glide                               | 68+90    | 861.97'   | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14+25                             | 871.93'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool                         | 33+99   | 869.38'   | Run     | 51+89                                 | 866.76'   | Riffle                              | 69+52    | 861,16'   | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14+75                             | 871.27'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D                        | 34+34   | 868.72'   | Pool    | 52+04                                 | 866.23'   | Run                                 | 70+07    | 862.86'   | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 15+25                             | 872.74'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide                        | 34+69   | 868.08'   | Max D   | 52+19                                 | 865,66'   | Pool                                | 70+32    | 863.16'   | Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 15+45                             | 873.01'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle                       | 35+04   | 869.57'   | Glide   | 52+64                                 | 864.88'   | Max D                               | 70+62    | 862.37'   | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15+80                             | 872.29'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run                          | 35+19   | 869.85'   | Riffle  | 53+09                                 | 866,44'   | Glide                               | 70+92    | 861.67'   | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 16+15                             | 871.63'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool                         | 35+54   | 869.13'   | Run     | 53+29                                 | 866.60'   | Riffle                              | 71+32    | 860.89'   | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 16+35                             | 871.01'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D                        | 35+89   | 868.47'   | Pool    | 53+49                                 | 865.98'   | Run                                 | 71+72    | 862.61'   | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 16+55                             | 872.53'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide                        | 36+39   | 867.81'   | Max D   | 53+69                                 | 865.40'   | Pool                                | 71+87    | 862.93'   | Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16+67                             | 872.81'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle                       | 36+89   | 869.28'   | Glide   | 54+29                                 | 864.60'   | Max D                               | 72+12    | 862.14'   | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 17+07                             | 872.09'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run                          | 37+09   | 869.55'   | Riffle  | 54+89                                 | 866.13    | Glide                               | 72+12    | 861.46    | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 17+47                             | 871.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pool                         | 37+39   | 868.84'   | Run     | 55+09                                 | 866.43    | Riffle                              | 72+57    | 860.70    | a second a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 17+97                             | 870,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max D                        | 37+69   | 868,18'   | Pool    | 55+34                                 | 865.61    | Run                                 | 72+62    |           | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 18+47                             | 872.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Glide                        | 38+14   | 867.53'   | Max D   | 55+59                                 | 864.98'   | Pool                                |          | 862.43    | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 18+62                             | 872.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Riffle                       | 38+59   | 869.01    | Glide   | 56+09                                 |           | the state many and and              | 73+22    | 862.73    | Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19+12                             | 871.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Run                          | 38+59   | 869.28    | Riffle  | 00-09                                 | 864.13'   | Max D                               | 73+27.13 | 862.78    | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|                    | PROJECT ENGINEER | PROJECT REFERENCE NO.<br>LITTLE WHITE OAK CREEK                                                  | SHEET NO.<br>3 |
|--------------------|------------------|--------------------------------------------------------------------------------------------------|----------------|
| UED FOR PERMITTING | DÓ NỘT USE       | PROP. PROFILE                                                                                    | DATA           |
|                    | FOR CONSTRUCTION |                                                                                                  |                |
|                    |                  | PO Box 33127<br>Raleigh, N.C. 27636<br>(919) 851-1912<br>(919) 851-1918 (FAX<br>WWW.MULKEYING.CO | }              |

#### **R2**

\*\*

4

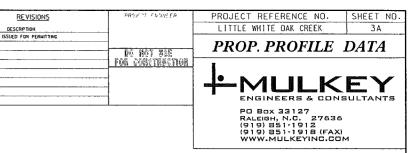
### **PROPOSED PROFILE DATA**

| DATE    | BY  |   |
|---------|-----|---|
| 1/31/07 | JTL | t |
|         |     | _ |
|         | -   |   |
|         |     | _ |
|         |     |   |
|         |     | _ |
|         |     |   |
|         |     |   |
|         |     |   |
|         |     |   |

R1A

÷

÷


|              | Thalweg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                           | Thalweg                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Station      | Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Feature | Station                   | Elevation                                         | Feature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0+00         | 891.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Riffle  | 6+32                      | 886.57'                                           | Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0+34         | 891.25'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Run     | 6+42                      | 886.36'                                           | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0+37         | 891.07'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pool    | 6+52                      | 886.18'                                           | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0+42         | 890,96'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max D   | 6+64                      | 886.08'                                           | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0+46         | 891.21'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Glide   | 6+76                      | 886.33'                                           | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0+49         | 891.25'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Riffle  | 6+85                      | 886.37'                                           | Riffie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0+58         | 890.98'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Run     | 6+92                      | 886.17'                                           | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0+63         | 890.79'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pool    | 7+00                      | 886.01'                                           | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0+79         | 890.55'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max D   | 7+09                      | 885.91'                                           | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0+91         | 890,72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Glide   | 7+18                      | 886.18                                            | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1+02         | 890.67'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Riffle  | 7+24                      | 886.23'                                           | Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1+10         | 890.41'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Run     | 7+30                      | 886.03'                                           | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1+19         | 890.18'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pool    | 7+37                      | 885.87'                                           | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1+32         | 889.97'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max D   | 7+50                      | 885.76'                                           | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1+44         | 890.14'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Glide   | 7+63                      | 886.01'                                           | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1+53         | 890.11'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Riffle  | 7+74                      | 886.04'                                           | Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1+63         | 889.83'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Run     | 7+82                      | 885.84'                                           | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1+69         | 889.63'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pool    | 7+91                      | 885.67'                                           | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1+80         | 889,45'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max D   | 8+01                      | 885.57'                                           | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1+90         | 889.64'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Glide   | 8+11                      | 885.83'                                           | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1+95         | 889,65'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Riffle  | 8+16                      | 885.88'                                           | Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2+04         | 889.38'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Run     | 8+24                      | 885,69'                                           | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2+14         | 889.13'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pool    | 8+32                      | 885.52                                            | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2+30         | 888.90'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max D   | 8+43                      | 885.41'                                           | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2+41         | 889.08'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Glide   | 8+54                      | 885.67'                                           | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2+49         | 889.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Riffle  | 8+65                      | 885.70'                                           | Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2+56         | 888.81'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Run     | 8+75                      | 885.32'                                           | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2+64         | 888.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pool    | 8+85                      | 884.98'                                           | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2+78         | 888.37'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max D   | 8+95                      | 884,71                                            | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2+78         | 888.52'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Glide   | 9+06                      | 884.78                                            | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3+03         | 888.47'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Riffle  | 9+15                      | 884,66'                                           | Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3+03         | without proceedings of the first | Run     | 9+15                      | 883.93'                                           | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | 888.20'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pool    | 9+42                      | 883,56'                                           | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3+21<br>3+32 | 887.96'<br>887.78'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max D   | 9+55                      | 883.23'                                           | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3+32         | 887.97'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Glide   | 9+00                      | 883.26                                            | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3+42         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Riffle  | 9+79                      | 883,14'                                           | Riffie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | 887.99'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Run     | 9+95                      | 882,83                                            | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3+55         | 887.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pool    | 10+02                     | 882.54'                                           | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3+64         | 887.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 10+02                     | kan na kana a sa | <ol> <li>A set a state of a set and set.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3+77         | 887.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Max D   | 10+14                     | 882.23                                            | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3+90         | 887.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Glide   | 10+26                     | 882.28'<br>882.23'                                | Glide<br>Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3+97         | 887.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Riffle  | · · · · · · · · · · · · · |                                                   | And a second sec |
| 4+06         | 887.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Run     | 10+40                     | 881.89                                            | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4+15         | 887.06'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pool    | 10+49                     | 881.56                                            | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4+32         | 886.94'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max D   | 10+60                     | 881,27'                                           | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4+42         | 887,20'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Glide   | 10+71                     | 881.34'                                           | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4+53         | 887.23'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Riffle  | 10+78                     | 881.27                                            | Riffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4+60         | 887.04'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Run     | 10+87                     | 880.91                                            | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4+67         | 886.87'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pool    | 10+96                     | 880,58                                            | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4+79         | 886.76'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max D   | 11+05                     | 880.34'                                           | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4+86         | 887.04'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Glide   | 11+14                     | 880,45'                                           | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4+90         | 887.09'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Riffle  | 11+20                     | 880.39'                                           | Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4+98         | 886.89'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Run     | 11+25                     | 880.12                                            | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5+07         | 886.72'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pool    | 11+31                     | 879.85                                            | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5+22         | 886.61'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max D   | 11+43                     | 879.54'                                           | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5+37         | 886.85'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Glide   | 11+55                     | 879.59'                                           | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5+48         | 886.88'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Riffle  | 11+62                     | 879.52'                                           | Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5+56         | 886.68'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Run     | 11+68                     | 879.22'                                           | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5+65         | 886.51'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pool    | 11+74                     | 878.96'                                           | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5+76         | 886.41'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max D   | 11+83                     | 878.71'                                           | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5+87         | 886.66'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Glide   | 11+92                     | 878.82                                            | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5+92         | 886.72'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Riffle  | 11+96                     | 878.81'                                           | Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6+01         | 886.51'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Run     | 11+99                     | 878.58'                                           | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6+10         | 886.34'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pool    | 12+03                     | 878.36'                                           | Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6+19         | 886.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Max D   | 12+09                     | 878.00'                                           | Max D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6+25         | 886.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Glide   | 12+25.88                  |                                                   | Glide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

R2A

|         | Thalweg   |         |
|---------|-----------|---------|
| Station | Elevation | Feature |
| 0+00    | 876.61'   | Riffle  |
| 0+21    | 876.13'   | Run     |
| 0+31    | 875.80'   | Pool    |
| 0+48    | 875.52    | Max D   |
| 0+58    | 875.86'   | Glide   |
| 0+71    | 875.92    | Riffle  |
| 0+81    | 875.47'   | Run     |
| 0+91    | 875.14'   | Pool    |
| 1+11    | 874.83'   | Max D   |
| 1+31    | 875.06'   | Glide   |
| 1+43    | 875.13'   | Riffle  |
| 1+53    | 874.68'   | Run     |
| 1+68    | 874.29    | Pool    |
| 1+83    | 874.04'   | Max D   |
| 2+01    | 874.29    | Glide   |
| 2+11    | 874.31'   | Riffle  |
| 2+21    | 873.79    | Run     |
| 2+31    | 873.39'   | Pool    |
| 2+56    | 872.85'   | Max D   |
| 2+78    | 872.90'   | Glide   |
| 2+93    | 872.83'   | Riffle  |
| 3+03    | 872.31'   | Run     |
| 3+13    | 871.91'   | Pool    |
| 3+23    | 871.64'   | Max D   |
| 3+33    | 871.91    | Glide   |
| 3+38    | 872.02    | Riffle  |
| 3+45    | 871.56    | Run     |
| 3+52    | 871.21'   | Pool    |
| 3+72    | 870.76    | Max D   |
| 3+79.57 | 871.08'   | Glide   |

|              | Thalweg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Thalweg |        | 9        | Thalweg                               |         |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|----------|---------------------------------------|---------|
|              | Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        | Station  |                                       | Feature |
| 0+00         | 889.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pool           | 5+35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 883.34' | Riffle | 11+17    | 876.42'                               | Pool    |
| 0+08         | 888.99'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D          | 5+44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 883.07' | Run    | 11+31    | 876.21                                | Max D   |
| 0+16         | 889.20'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide          | 5+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 882.86  | Pool   | 11+41    | 876.39                                | Glide   |
| 0+19         | 889.24'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle         | 5+58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 882.71  | Max D  | 11+49    | 876.37'                               | Riffle  |
| 0+29         | 888.95'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run            | 5+69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 882.88  | Glide  | 11+55    | 876.14'                               | Run     |
| 0+36         | 888.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pool           | 5+74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 882.90' | Riffle | 11+62    | 875.92'                               | Pool    |
| 0+48         | 888.54'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D          | 6+40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 881.97  | Run    | 11+71    | 875.76                                | Max D   |
| 0+63         | 888.66'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide          | 6+55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 881.66  | Pool   | 11+80    | 875.96                                | Glide   |
| 0+68         | 888.68'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle         | 6+72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 881.41  | Max D  | 11+87    | 875.95'                               | Riffle  |
| 0+77         | 888.40'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run            | 6+82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 881.59  | Glide  | 11+95    | 875.69                                | Run     |
| 0+86         | 888,16'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool           | 6+90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 881.57  | Riffle | 12+04    | 875.45                                | Pool    |
| 1+00         | 887.94'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D          | 6+95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 881.35  | Run    | 12+19    | 875.22                                | Max D   |
| 1+10         | 888.13'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide          | 7+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 881.11  | Pool   | 12+31    | 875.39'                               | Glide   |
| 1+13         | 888.16'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle         | 7+15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 880.92  | Max D  | 12+40    | 875.36'                               | Riffle  |
| 1+23         | 887.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Run            | 7+28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 881.07  | Glide  | 12+48    | 875.10'                               | Run     |
| 1+30         | 887.66'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool           | 7+34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 881.07  | Riffle | 12+56    | 874.87'                               | Pool    |
| 1+40         | 887.48'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D          | 7+40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 880,83' | Run    | 12+68    | 874.67'                               | Max D   |
| 1+50         | 887.67'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide          | 7+48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 880,60' | Pool   | 12+80    | 874.84'                               | Glide   |
| 1+58         | 887.65'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle         | 7+59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 880.42' | Max D  | 12+86    | 874.84'                               | Riffle  |
| 1+66         | 887,39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Run            | 7+69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 880.60' | Glide  | 12+96    | 874.56'                               | Run     |
| 1+76         | 887.13'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool           | 7+76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 880.59  | Riffle | 13+06    | 874.31'                               | Pool    |
| 1+89         | 886.92'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D          | 7+84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 880.33' | Run    | 13+15    | 874.15'                               | Max D   |
| 2+02         | 887.08'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide          | 7+93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 880.09' | Pool   | 13+24    | 874,34'                               | Glide   |
| 2+10         | 887.05'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle         | 8+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 879.89  | Max D  | 13+31    | 874,34'                               | Riffle  |
| 2+20         | 886.77'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run            | 8+18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 880.05  | Glide  | 13+38    | 874.09'                               | Run     |
| 2+30         | 886.52'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool           | 8+24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 880.05' | Riffle | 13+46    | 873.86'                               | Pool    |
| 2+40         | 886.34'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D          | 8+31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 879.80' | Run    | 13+59    | 873.65'                               | Max D   |
| 2+50         | 886.53'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide          | 8+40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 879.56  | Pool   | 13+74    | 873.67'                               | Glide   |
| 2+62         | 886.46'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle         | 8+53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 879.35  | Max D  | 13+81    | 873.61'                               | Riffle  |
| 2+72         | 886,18'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run            | 8+64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 879.52  | Glide  | 13+89    | 873.29'                               | Run     |
| 2+82         | 885,92'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool           | 8+74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 879.48' | Riffle | 13+96    | 873.02'                               | Pool    |
| 2+87         | 885.81'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D          | 8+85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 879.18' | Run    | 14+04    | 872.81                                | Max D   |
| 2+92         | 886,05'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide          | 8+93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 878.95  | Pool   | 14+13    | 872.94'                               | Glide   |
| 2+96         | 886.07'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle         | 9+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 878.78  | Max D  | 14+20    | 872.88'                               | Riffle  |
| 3+08         | 885.77'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run            | 9+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 878,98' | Glide  | 14+25    | 872.62'                               | Run     |
| 3+18         | 885,51'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool           | 9+18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 878.98' | Riffle | 14+33    | 872,33'                               | Pool    |
| 3+32         | 885.29'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D          | 9+24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 878.74' | Run    | 14+48    | 871.99'                               | Max D   |
| 3+45         | 885.44'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide          | 9+34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 878,49' | Pool   | 14+61    | 872.05'                               | Glide   |
| 3+56         | 885.39'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle         | 9+43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 878.32' | Max D  | 14+72    | 871.91'                               | Riffle  |
| 3+66         | 885.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Run            | 9+54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 878.50' | Glide  | 14+80    | 871.59                                | Run     |
| 3+74         | 884.87'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool           | 9+62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 878.48' | Riffle | 14+88    | 871.30'                               | Pool    |
| 3+84         | 884.70'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D          | 9+73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 878.18' | Run    | 14+97    | 871.07'                               | Max D   |
| 3+96         | 884.86'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide          | 9+85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 877,91' | Pool   | 15+06    | 871.20'                               | Glide   |
| 4+02         | 884.86'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle         | 9+95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 877.73  | Max D  | 15+12    | 871.16                                | Riffle  |
| 4+12         | 884.58'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Run            | 10+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 877,90' | Glide  | 15+19    | 870.86                                | Run     |
| 4+18         | 884.37'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool           | 10+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 877.91' | Riffle | 15+29    | 870.53                                | Pool    |
| 4+26         | 884.22'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max D          | 10+22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 877.63  | Run    | 15+39    | 870.29                                | Max D   |
| 4+36         | 884.40'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide          | 10+32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 877.37  | Pool   | 15+52    | 870.34'                               | Glide   |
| 4+41         | 884.42'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Riffle         | 10+43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 877.19  | Max D  | 15+59    | 870.28                                | Riffle  |
| 4+48         | 884.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Run            | 10+43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 877.40  | Glide  | 15+64    | 870.02                                | Run     |
| 4+40<br>4+58 | 883.91'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool           | 10+51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 877.42  | Riffle | 15+69    | 870.02                                |         |
| 4+30         | 883.66'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | 10+56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 877,18  |        |          | · · · · · · · · · · · · · · · · · · · | Pool    |
| 4+75         | CONTRACTOR DATA AND A DESCRIPTION OF A D | Max D          | 10+62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | Run    | 15+82    | 869.48'                               | Max D   |
| 4+85         | 883.84'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glide          | the second | 876.95  | Pool   | 15+90    | 869.63'                               | Glide   |
|              | 883.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Riffle         | 10+83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 876.74  | Max D  | 15+98    | 869.38'                               | Riffle  |
| 5+06         | 883.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Run            | 10+96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 876,90' | Glide  | 16+13    | 868.96'                               | Run     |
| 5+14         | 883.27'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pool           | 11+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 876.89  | Riffle | 16+29    | 868,67'                               | Pool    |
| 5+22<br>5+29 | 883.12'<br>883.34'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Max D<br>Glide | 11+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 876.64' | Run    | 16+54.26 | 867.40'                               | Max D   |

R2B



#### R2D

|         | Thalweg   | -       |         | Thalweg   |         |
|---------|-----------|---------|---------|-----------|---------|
| Station | Elevation | Feature | Station | Elevation | Feature |
| 0+00    | 871.97'   | Riffle  | 4+31    | 869.74'   | Riffle  |
| 0+27    | 871.66    | Run     | 4+37    | 869.54'   | Run     |
| 0+32    | 871.49    | Pool    | 4+44    | 869,36    | Pool    |
| 0+37    | 871.40    | Max D   | 4+54    | 869.25'   | Max D   |
| 0+42    | 871.68    | Glide   | 4+64    | 869,38'   | Glide   |
| 0+45    | 871.73    | Riffie  | 4+69    | 869,36'   | Riffle  |
| 0+53    | 871.52    | Run     | 4+79    | 869.02'   | Run     |
| 0+64    | 871.32    | Pool    | 4+89    | 868.71'   | Pool    |
| 0+79    | 871.19    | Max D   | 4+99    | 868.48'   | Max D   |
| 0+92    | 871.42'   | Glide   | 5+10    | 868.59'   | Glide   |
| 1+02    | 871.44    | Riffle  | 5+16    | 868,55'   | Riffle  |
| 1+11    | 871.22    | Run     | 5+25    | 868.23'   | Run     |
| 1+20    | 871.04    | Pool    | 5+35    | 867.92'   | Pool    |
| 1+30    | 870.92    | Max D   | 5+48    | 867.63    | Max D   |
| 1+42    | 871.16    | Glide   | 5+62    | 867.69    | Glide   |
| 1+47    | 871.21    | Riffle  | 5+71    | 867.61'   | Riffle  |
| 1+55    | 871.00    | Run     | 5+79    | 867.30'   | Run     |
| 1+64    | 870.81    | Pool    | 5+88    | 867.00'   | Pool    |
| 1+78    | 870.68    | Max D   | 5+96    | 866.81'   | Max D   |
| 1+92    | 870.90    | Glide   | 6+06    | 866.93'   | Glide   |
| 2+02    | 870.92    | Riffle  | 6+11    | 866.92'   | Riffle  |
| 2+12    | 870.70    | Run     | 6+20    | 866.59    | Run     |
| 2+22    | 870.51    | Pool    | 6+29    | 866,30'   | Pool    |
| 2+31    | 870.40    | Max D   | 6+40    | 866.05'   | Max D   |
| 2+42    | 870.65    | Glide   | 6+52    | 866.14'   | Glide   |
| 2+47    | 870.69    | Riffle  | 6+58    | 866.11'   | Riffle  |
| 2+53    | 870.49    | Run     | 6+65    | 865.82    | Run     |
| 2+60    | 870.31    | Pool    | 6+73    | 865.54'   | Pool    |
| 2+70    | 870.20    | Max D   | 6+85    | 865,27'   | Max D   |
| 2+81    | 870.45    | Glide   | 6+97    | 865.37'   | Glide   |
| 2+90    | 870.47    | Riffle  | 7+03    | 865,33'   | Riffle  |
| 3+00    | 870.25    | Run     | 7+08    | 865.08'   | Run     |
| 3+11    | 870.05    | Pool    | 7+14    | 864.83'   | Pool    |
| 3+20    | 869,94'   | Max D   | 7+26    | 864.57    | Max D   |
| 3+29    | 870.20'   | Glide   | 7+38    | 864,66    | Glide   |
| 3+35    | 870.24    | Riffe   | 7+45    | 864.61'   | Riffle  |
| 3+43    | 870.03'   | Run     | 7+52    | 864.32'   | Run     |
| 3+51    | 869.84'   | Pool    | 7+60    | 864.04'   | Pool    |
| 3+59    | 869,74'   | Max D   | 7+70    | 863.81'   | Max D   |
| 3+68    | 870.00    | Glide   | 7+81    | 863.92'   | Glide   |
| 3+72    | 870.05    | Riffe   | 7+89    | 863.85'   | Riffle  |
| 3+81    | 869,83'   | Run     | 8+02    | 863.46'   | Run     |
| 3+91    | 869.64'   | Pool    | 8+16    | 863.08'   | Pool    |
| 4+06    | 869.50'   | Max D   | 8+60.31 | 861.65'   | Max D   |
| 4+21    | 869.72    | Glide   |         |           |         |



### **STRUCTURE TABLES**

| BY  |    |
|-----|----|
| JTL | I. |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
| -   |    |
|     | BY |

|           | F          | R1 (Design) |                |                |                                       | R1 (Construct)  | )               |
|-----------|------------|-------------|----------------|----------------|---------------------------------------|-----------------|-----------------|
| Structure |            |             | Thalweg        | Bankfull       | Constructed                           | Constructed Arm | Constructed Arm |
| Number    | Туре       | Station     | Elevation (ft) | Elevation (ft) | Elevation (ft)                        | Angle ( ° )     | Siope (%)       |
| 1         | J-Hook     | 2+36.23     | 882.42         | 886.20         |                                       |                 |                 |
| 2         | Rock Vane  | 3+12.24     | 883.30         | 885.99         |                                       |                 |                 |
| 3         | J-Hook     | 6+68.02     | 881.44         | 885.01         |                                       |                 |                 |
| 4         | Cross Vane | 7+24.47     | 882.39         | 884.88         |                                       |                 |                 |
| 5         | J-Hook     | 8+42.83     | 881.41         | 884.62         |                                       |                 |                 |
| 6         | J-Hook     | 9+48.68     | 880.64         | 884.38         |                                       |                 |                 |
| 7         | J-Hook     | 10+92.50    | 880.29         | 884.05         |                                       |                 |                 |
| 8         | Rock Vane  | 11+42.10    | 881.48         | 883.94         |                                       |                 |                 |
| 9         | J-Hook     | 12+42.53    | 879.91         | 883.72         |                                       |                 |                 |
| 10        | Rock Vane  | 12+98.82    | 881.05         | 883.59         |                                       |                 |                 |
| 11        | J-Hook     | 14+12.56    | 879.60         | 883.33         | · · · · · · · · · · · · · · · · · · · |                 |                 |
| 12        | Cross Vane | 15+48.88    | 880.28         | 883.03         |                                       |                 |                 |
| 13        | Rock Vane  | 16+50.00    | 880.25         | 882.80         |                                       |                 |                 |
| 14        | J-Hook     | 17+33.73    | 879.24         | 882.61         |                                       |                 |                 |
| 15        | Rock Vane  | 18+04.00    | 879.57         | 882.45         |                                       |                 |                 |
| 16        | J-Hook     | 19+24.63    | 878.46         | 882.18         |                                       |                 |                 |
| 17        | J-Hook     | 20+63.70    | 878.14         | 881.87         |                                       |                 |                 |
| 18        | Rock Vane  | 21+13.69    | 879.12         | 881.76         |                                       |                 |                 |
| 19        | J-Hook     | 22+33.68    | 877.75         | 881.49         |                                       |                 |                 |
| 20        | Rock Vane  | 22+93.91    | 878.77         | 881.35         |                                       |                 |                 |
| 21        | Cross Vane | 24+24.13    | 878.58         | 881.06         |                                       |                 |                 |
| 22        | J-Hook     | 25+24.35    | 877.30         | 880.83         |                                       |                 |                 |
| 23        | Rock Vane  | 25+79.06    | 877.79         | 880.71         |                                       |                 |                 |
| 24        | J-Hook     | 27+24.63    | 877.52         | 880.38         |                                       |                 |                 |
| 25        | J-Hook     | 28+18.89    | 876.62         | 886.07         |                                       | -               |                 |
| 26        | Rock Vane  | 28+79.81    | 877.37         | 880.03         |                                       |                 |                 |
| 27        | J-Hook     | 29+93.92    | 876.23         | 879.78         |                                       |                 |                 |
| 28        | Rock Vane  | 30+38.67    | 876.49         | 879.68         |                                       |                 |                 |
| 29        | J-Hook     | 31+53.72    | 876.06         | 879.42         |                                       |                 |                 |
| 30        | Cross Vane | 32+77.00    | 876.40         | 879.14         |                                       |                 |                 |
| 31        | Rock Vane  | 33+26.39    | 875.50         | 879.03         |                                       |                 |                 |
| 32        | J-Hook     | 34+28.93    | 875.48         | 878.80         |                                       |                 |                 |
| 33        | Rock Vane  | 34+74.50    | 875.52         | 878.70         |                                       |                 |                 |
| 34        | J-Hook     | 35+83.73    | 875.00         | 878.45         |                                       |                 |                 |
| 35        | Rock Vane  | 36+33.70    | 875.02         | 878.34         |                                       |                 |                 |
| 36        | J-Hook     | 37+43.93    | 874.55         | 878.09         |                                       |                 |                 |
| 37        | Rock Vane  | 37+90.80    | 874.92         | 877.98         |                                       |                 |                 |

|           | F          | R1 (Design) |                |                |                                        | R1 (Construct)  | )               |
|-----------|------------|-------------|----------------|----------------|----------------------------------------|-----------------|-----------------|
| Structure |            |             | Thalweg        | Bankfull       | Constructed                            | Constructed Arm | Constructed Arn |
| Number    | Туре       | Station     | Elevation (ft) | Elevation (ft) | Elevation (ft)                         | Angle ( ° )     | Slope (%)       |
| 38        | J-Hook     | 38+78.90    | 874.50         | 877.79         |                                        |                 |                 |
| 39        | Rock Vane  | 39+40.58    | 874.71         | 877.65         |                                        |                 |                 |
| 40        | J-Hook     | 40+38.73    | 874.00         | 877.43         |                                        |                 |                 |
| 41        | Rock Vane  | 40+83.73    | 873.79         | 877.32         |                                        |                 |                 |
| 42        | J-Hook     | 42+12.81    | 873.26         | 877.03         |                                        |                 |                 |
| 43        | J-Hook     | 43+43.92    | 873.44         | 876.74         |                                        |                 |                 |
| 44        | Rock Vane  | 43+94.19    | 873.61         | 876.63         |                                        |                 |                 |
| 45        | J-Hook     | 45+18.93    | 872.52         | 876.34         |                                        |                 |                 |
| 46        | J-Hook     | 46+78.96    | 872.45         | 875.98         |                                        |                 |                 |
| 47        | Rock Vane  | 47+43.90    | 872.44         | 875.84         |                                        |                 |                 |
| 48        | J-Hook     | 49+93.89    | 872.44         | 875.19         |                                        |                 |                 |
| 49        | J-Hook     | 51+33.62    | 871.56         | 874.80         |                                        |                 |                 |
| 50        | Rock Vane  | 52+46.40    | 872.03         | 874.49         |                                        |                 |                 |
| 51        | J-Hook     | 53+28.88    | 870.87         | 874.31         |                                        |                 |                 |
| 52        | Rock Vane  | 54+48.11    | 870.82         | 874.07         |                                        |                 |                 |
| 53        | J-Hook     | 55+35.00    | 871.18         | 873.89         |                                        |                 |                 |
| 54        | Rock Vane  | 57+37.03    | 870.25         | 872.99         |                                        |                 |                 |
| 55        | J-Hook     | 57+83.68    | 869.49         | 872.89         |                                        |                 |                 |
| 56        | Cross Vane | 58+45.00    | 870.20         | 872.76         |                                        |                 | ·····           |
| 57        | J-Hook     | 59.08.58    | 883.26,        | 872.63         |                                        |                 |                 |
| 58        | Rock Vane  | 59+59.95    | 869.79         | 872.52         |                                        |                 |                 |
| 59        | J-Hook     | 60+43.89    | 869.10         | 872.34         |                                        |                 |                 |
| 60        | Rock Vane  | 61+03.96    | 868.90         | 872.21         |                                        |                 |                 |
| 61        | J-Hook     | 61+93.91    | 868.70         | 872.02         |                                        |                 |                 |
| 62        | Rock Vane  | 62+64.26    | 869.35         | 871.88         |                                        |                 |                 |
| 63        | J-Hook     | 63+49.46    | 867.94         | 871.69         |                                        |                 |                 |
| 64        | Cross Vane | 65+22.89    | 868.57         | 871.33         |                                        |                 |                 |
| 65        | J-Hook     | 66+09.96    | 867.63         | 871.14         |                                        |                 |                 |
| 66        | J-Hook     | 67+18.90    | 867.52         | 870.91         |                                        |                 |                 |
| 67        | Rock Vane  | 67+79.64    | 867.75         | 870.78         | -                                      |                 |                 |
| 68        | J-Hook     | 68+74.63    | 867.37         | 870.58         |                                        |                 |                 |
| 69        | Rock Vane  | 69+28.98    | 867.81         | 870.47         |                                        |                 |                 |
| 70        | J-Hook     | 69+99.54    | 866.92         | 870.32         |                                        |                 |                 |
| 71        | Rock Vane  | 70+49.56    | 866.89         | 870.21         |                                        |                 |                 |
| 72        | J-Hook     | 71+68.91    | 866.31         | 869.96         |                                        |                 |                 |
| 73        | J-Hook     | 73+13.42    | 865.95         | 869.65         |                                        |                 |                 |
| 74        | Cross Vane | 74+51.31    | 866.83         | 869.36         | ······································ |                 |                 |

| R1A (Design)        |            |          |                           |                            | R1A (Construct)               |                                |                              |
|---------------------|------------|----------|---------------------------|----------------------------|-------------------------------|--------------------------------|------------------------------|
| Structure<br>Number | Туре       | Station  | Thalweg<br>Elevation (ft) | Bankfull<br>Elevation (ft) | Constructed<br>Elevation (ft) | Constructed Arm<br>Angle ( ° ) | Constructed Arm<br>Slope (%) |
| 147                 | Cross Vane | 00+33.14 | 891.26                    | 892.16                     |                               |                                |                              |
| 148                 | Cross Vane | 02+95.00 | 888.51                    | 889.29                     |                               |                                |                              |
| 149                 | Rock Vane  | 06+26.00 | 886.53                    | 887.32                     |                               |                                |                              |
| 150                 | Cross Vane | 09+45.28 | 883.82                    | 884.76                     |                               |                                |                              |
| 151                 | Rock Vane  | 10+07.63 | 882.39                    | 883.46                     |                               |                                |                              |
| 152                 | Cross Vane | 10+26.00 | 882.28                    | 883.08                     |                               |                                |                              |
| 153                 | Cross Vane | 11+15.00 | 880.44                    | 881.23                     |                               |                                |                              |
| 154                 | Cross Vane | 11+90.00 | 878.80                    | 879.67                     |                               |                                |                              |

÷

)

į.

| REVISIONS PROJECT ENGINEER | PROJECT REFERENCE NO.                                                                                                  | SHEET NO.<br>3B |
|----------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------|
| ued for permiting          | STRUCTURE TA                                                                                                           | BLES            |
| FOR CONSTRUCTION           |                                                                                                                        | ΕY              |
|                            | ENGINEERS & CONS<br>PD Box 33127<br>RALEIGH, N.C. 27636<br>(919) 851-1912<br>(919) 851-1918 (FAX)<br>WWW.MULKEYING.COD | BULTANTS        |



04751

## **STRUCTURE TABLES**

| DATE    | BY  |   |
|---------|-----|---|
| 1/31/07 | JTL | 1 |
|         |     | 1 |
|         |     |   |
|         |     | - |
|         | i   | - |
|         | i   |   |
|         | 1   |   |
|         |     |   |
| •       |     |   |

|           | F          | 2 (Design) | R2 (Construct) |                |                |                 |                 |
|-----------|------------|------------|----------------|----------------|----------------|-----------------|-----------------|
| Structure |            |            | Thalweg        | Bankfull       | Constructed    | Constructed Arm | Constructed Arm |
| Number    | Туре       | Station    | Elevation (ft) | Elevation (ft) | Elevation (ft) | Angle (°)       | Slope (%)       |
| 75        | Cross Vane | 00+23.52   | 875.00         | 878.27         |                |                 |                 |
| 76        | J-Hook     | 01+49.66   | 873.80         | 878.07         |                |                 |                 |
| 77        | Rock Vane  | 02+13.33   | 874.16         | 877.97         |                |                 |                 |
| 78        | J-Hook     | 03+54.31   | 873.44         | 877.74         |                |                 |                 |
| 79        | Rock Vane  | 04+25.60   | 874.59         | 877.63         |                |                 |                 |
| 80        | J-Hook     | 05+14.71   | 873.47         | 877.49         |                |                 |                 |
| 81        | Rock Vane  | 05+73.93   | 873.25         | 877.39         |                |                 |                 |
| 82        | J-Hook     | 07+09.33   | 872.83         | 877.18         |                |                 |                 |
| 83        | Rock Vane  | 07+76.24   | 873.81         | 877.07         |                |                 |                 |
| 84        | J-Hook     | 08+49.69   | 872.86         | 876.95         |                |                 |                 |
| 85        | Rock Vane  | 09+13.60   | 872.98         | 876.85         |                |                 |                 |
| 86        | J-Hook     | 10+70.17   | 872.38         | 876.60         |                |                 |                 |
| 87        | Rock Vane  | 11+48.95   | 873.30         | 876.47         |                |                 |                 |
| 88        | J-Hook     | 12+64.66   | 871.76         | 876.29         |                |                 |                 |
| 89        | Rock Vane  | 13+25.17   | 873.21         | 876.19         |                |                 |                 |
| 90        | J-Hook     | 14+29.53   | 871.87         | 876.02         | 6-1            |                 |                 |
| 91        | Rock Vane  | 15+09.58   | 872.29         | 875.90         |                |                 |                 |
| 92        | J-Hook     | 16+39.65   | 871.36         | 875.69         |                |                 |                 |
| 93        | J-Hook     | 17+70.21   | 871.10         | 875.48         |                |                 |                 |
| 94        | Cross Vane | 18+50.00   | 872.28         | 875.35         |                |                 |                 |
| 95        | J-Hook     | 19+59.48   | 871.10         | 875.18         |                |                 |                 |
| 96        | Rock Vane  | 20+29.52   | 870.93         | 875.06         |                |                 |                 |
| 97        | J-Hook     | 21+59.23   | 870.50         | 874.86         |                |                 |                 |
| 98        | Rock Vane  | 22+24.88   | 871.66         | 874.75         |                |                 |                 |
| 99        | J-Hook     | 23+34.52   | 870.32         | 874.58         |                |                 |                 |
| 100       | Rock Vane  | 23+99.67   | 870.74         | 874.47         |                |                 |                 |
| 101       | J-Hook     | 25+34.51   | 870.00         | 874.26         |                |                 |                 |
| 102       | Rock Vane  | 26+04.53   | 870.47         | 874.14         |                |                 |                 |
| 103       | J-Hook     | 27+54.41   | 869.54         | 873.90         |                |                 |                 |
| 104       | Rock Vane  | 28+28.00   | 870.53         | 873.79         |                |                 |                 |
| 105       | J-Hook     | 29+20.28   | 869.35         | 873.64         |                |                 |                 |
| 106       | Rock Vane  | 29+89.76   | 870.08         | 873.53         |                |                 |                 |
| 107       | J-Hook     | 30+95.35   | 869.10         | 873.36         |                |                 |                 |
| 108       | Rock Vane  | 31+34.35   | 869.07         | 873.30         |                |                 | 1               |
| 109       | J-Hook     | 32+64.81   | 868.42         | 873.09         |                |                 |                 |
| 110       | Cross Vane | 34+07.71   | 869.22         | 872.86         |                |                 |                 |

|           | F          | 2 (Design) |                |     |
|-----------|------------|------------|----------------|-----|
| Structure |            |            | Thalweg        |     |
| Number    | Туре       | Station    | Elevation (ft) | Ele |
| 111       | Rock Vane  | 34+70.38   | 868.14         |     |
| 112       | J-Hook     | 36+14.74   | 868.13         |     |
| 113       | Rock Vane  | 36+70.29   | 868.73         |     |
| 114       | J-Hook     | 37+99.71   | 867.74         |     |
| 115       | Cross Vane | 38+63.00   | 869.08         |     |
| 116       | J-Hook     | 39+74.75   | 867.62         |     |
| 117       | Cross Vane | 40+71.15   | 868.80         |     |
| 118       | J-Hook     | 41+95.42   | 867.05         |     |
| 119       | J-Hook     | 43+29.22   | 867.08         |     |
| 120       | Rock Vane  | 43+86.88   | 867.73         |     |
| 121       | J-Hook     | 44+79.29   | 867.20         |     |
| 122       | Rock Vane  | 45+39.61   | 867.01         |     |
| 123       | Cross Vane | 46+60.98   | 867.22         |     |
| 124       | J-Hook     | 47+29.70   | 866.34         |     |
| 125       | J-Hook     | 49+04.39   | 866.01         |     |
| 126       | Rock Vane  | 49+39.70   | 866.69         |     |
| 127       | Cross Vane | 50+64.65   | 867.05         |     |
| 128       | Cross Vane | 51+87.94   | 866.75         |     |
| 129       | J-Hook     | 52+65.40   | 864.93         |     |
| 130       | J-Hook     | 54+23.55   | 864.67         |     |
| 131       | Cross Vane | 54+89.07   | 866.13         |     |
| 132       | J-Hook     | 56+08.34   | 864.14         |     |
| 133       | J-Hook     | 57+66.20   | 864.87         |     |
| 134       | Cross Vane | 61+35.03   | 863.75         |     |
| 135       | Rock Vane  | 62+45.47   | 864.00         |     |
| 136       | J-Hook     | 63+73.77   | 862.22         |     |
| 137       | Rock Vane  | 64+43.30   | 863.50         |     |
| 138       | J-Hook     | 65+43.46   | 862.27         | -   |
| 139       | Rock Vane  | 66+10.36   | 863.06         |     |
| 140       | J-Hook     | 67+33.23   | 861.59         | 1   |
| 141       | Rock Vane  | 68+12.67   | 863.44         |     |
| 142       | J-Hook     | 69+23.58   | 861.53         |     |
| 143       | Rock Vane  | 70+20.80   | 863.03         |     |
| 144       | J-Hook     | 71+28.57   | 860.96         |     |
| 145       | Rock Vane  | 72+29.84   | 861.65         |     |
| 146       | Cross Vane | 72+91.92   | 862.43         |     |

|                     | R          | 2A (Design) | R2A (Construct)           |                            |                               |                                |                              |
|---------------------|------------|-------------|---------------------------|----------------------------|-------------------------------|--------------------------------|------------------------------|
| Structure<br>Number | Туре       | Station     | Thalweg<br>Elevation (ft) | Bankfull<br>Elevation (ft) | Constructed<br>Elevation (ft) | Constructed Arm<br>Angle ( ° ) | Constructed Arm<br>Slope (%) |
| 155                 | Cross Vane | 00+22.05    | 876.10                    | 877.45                     |                               |                                |                              |
| 156                 | Rock Vane  | 00+54.17    | 875.73                    | 877.09                     |                               |                                |                              |
| 157                 | Rock Vane  | 01+07.44    | 874.89                    | 876.48                     |                               |                                |                              |
| 158                 | Rock Vane  | 01+29.46    | 875.04                    | 876.23                     |                               |                                |                              |
| 159                 | Rock Vane  | 01+79.49    | 874.10                    | 875.67                     |                               |                                |                              |
| 160                 | Cross Vane | 02+02.00    | 874.29                    | 875.41                     |                               |                                |                              |
| 161                 | Rock Vane  | 02+49.50    | 872.99                    | 874.62                     |                               |                                |                              |
| 162                 | Cross Vane | 02+82.00    | 872.88                    | 874.03                     |                               |                                |                              |
| 163                 | Cross Vane | 03+35.00    | 871.95                    | 873.08                     |                               |                                |                              |

 $\widehat{+}$ 

÷

| REVISIONS          | PROJECT EDGMEER  | PROJECT REFERENCE NO.                                                                             | SHEET NO. |
|--------------------|------------------|---------------------------------------------------------------------------------------------------|-----------|
| DESCRIPTION        |                  | LITTLE WHITE OAK CREEK                                                                            | 3C        |
| UED FOR PERMITTING |                  | STRUCTURE TA                                                                                      | BLES      |
|                    | FOR CONSTRUCTION |                                                                                                   |           |
|                    |                  | PO Box 33127<br>Raleigh, N.C. 27636<br>(919) 851-1912<br>(919) 851-1918 (FAX)<br>WWW.MULKEYINC.CO |           |

|              | R2 (Construct) |                 |                 |  |  |  |  |  |
|--------------|----------------|-----------------|-----------------|--|--|--|--|--|
| Bankfull     | Constructed    | Constructed Arm | Constructed Arm |  |  |  |  |  |
| evation (ft) | Elevation (ft) | Angle ( ° )     | Slope (%)       |  |  |  |  |  |
| 872.76       |                |                 |                 |  |  |  |  |  |
| 872.53       |                |                 |                 |  |  |  |  |  |
| 872.44       |                |                 |                 |  |  |  |  |  |
| 872.23       |                |                 |                 |  |  |  |  |  |
| 872.13       |                |                 |                 |  |  |  |  |  |
| 871.95       |                |                 |                 |  |  |  |  |  |
| 871.80       |                |                 |                 |  |  |  |  |  |
| 871.60       |                |                 |                 |  |  |  |  |  |
| 871.39       |                |                 |                 |  |  |  |  |  |
| 871.29       |                |                 |                 |  |  |  |  |  |
| 871.15       |                |                 |                 |  |  |  |  |  |
| 871.05       |                |                 |                 |  |  |  |  |  |
| 870.86       |                |                 |                 |  |  |  |  |  |
| 870.75       |                |                 |                 |  |  |  |  |  |
| 870.47       |                |                 |                 |  |  |  |  |  |
| 870.41       |                |                 |                 |  |  |  |  |  |
| 870.21       |                |                 |                 |  |  |  |  |  |
| 870.00       |                |                 |                 |  |  |  |  |  |
| 869.85       |                |                 |                 |  |  |  |  |  |
| 869.55       |                |                 |                 |  |  |  |  |  |
| 869.42       |                |                 |                 |  |  |  |  |  |
| 869.08       | ; )            |                 |                 |  |  |  |  |  |
| 868.63       |                |                 |                 |  |  |  |  |  |
| 867.75       |                |                 |                 |  |  |  |  |  |
| 867.58       |                |                 |                 |  |  |  |  |  |
| 867.39       |                |                 |                 |  |  |  |  |  |
| 867.29       |                |                 |                 |  |  |  |  |  |
| 867.14       |                |                 |                 |  |  |  |  |  |
| 867.04       |                |                 |                 |  |  |  |  |  |
| 866.85       | 1              |                 |                 |  |  |  |  |  |
| 866.74       |                |                 |                 |  |  |  |  |  |
| 866.57       |                |                 |                 |  |  |  |  |  |
| 866.43       |                |                 |                 |  |  |  |  |  |
| 866.27       |                |                 |                 |  |  |  |  |  |
| 866.12       |                |                 |                 |  |  |  |  |  |
| 866.02       |                |                 |                 |  |  |  |  |  |



## **STRUCTURE TABLES**

| DATE.   | BY  |   |
|---------|-----|---|
| 1/31/07 | JTL |   |
|         |     |   |
|         |     |   |
|         |     |   |
|         |     |   |
|         |     |   |
|         |     |   |
|         |     | - |

|           | R          | 2B (Design) | R2B (Construct) |                |                                       |                 |                 |
|-----------|------------|-------------|-----------------|----------------|---------------------------------------|-----------------|-----------------|
| Structure |            |             | Thalweg         | Bankfull       | Constructed                           | Constructed Arm | Constructed Arm |
| Number    | Туре       | Station     | Elevation (ft)  | Elevation (ft) | Elevation (ft)                        | Angle ( ° )     | Slope (%)       |
| 164       | Cross Vane | 00+17.49    | 889.22          | 889.98         |                                       |                 |                 |
| 165       | Rock Vane  | 01+37.39    | 887.53          | 888.61         |                                       |                 |                 |
| 166       | Cross Vane | 04+90.00    | 883.82          | 884.58         | · · · · · · · · · · · · · · · · · · · |                 |                 |
| 167       | Rock Vane  | 05+54.57    | 882.77          | 883.85         |                                       |                 |                 |
| 168       | Cross Vane | 06+39.85    | 881.97          | 882.87         |                                       |                 |                 |
| 169       | Cross Vane | 07+30.23    | 881.07          | 881.84         |                                       |                 |                 |
| 170       | Cross Vane | 09+54.00    | 878.5           | 879.30         |                                       |                 |                 |
| 171       | Cross Vane | 10+09.32    | 877.9           | 878.67         |                                       |                 |                 |
| 172       | Rock Vane  | 11+24.57    | 876.31          | 877.38         |                                       |                 |                 |
| 173       | Cross Vane | 12+32.00    | 875.39          | 876.17         |                                       |                 |                 |
| 174       | Rock Vane  | 13+12.92    | 874.19          | 875.27         |                                       |                 |                 |
| 175       | Cross Vane | 13+27.49    | 874.34          | 875.10         |                                       |                 |                 |
| 176       | Rock Vane  | 14+43.46    | 872.09          | 873.17         |                                       |                 |                 |
| 177       | Cross Vane | 14+66.52    | 871.98          | 872.74         |                                       |                 |                 |
| 178       | Cross Vane | 15+55.15    | 870.31          | 871.08         |                                       |                 |                 |
| 179       | Cross Vane | 16+20.21    | 868.83          | 869.87         |                                       |                 |                 |

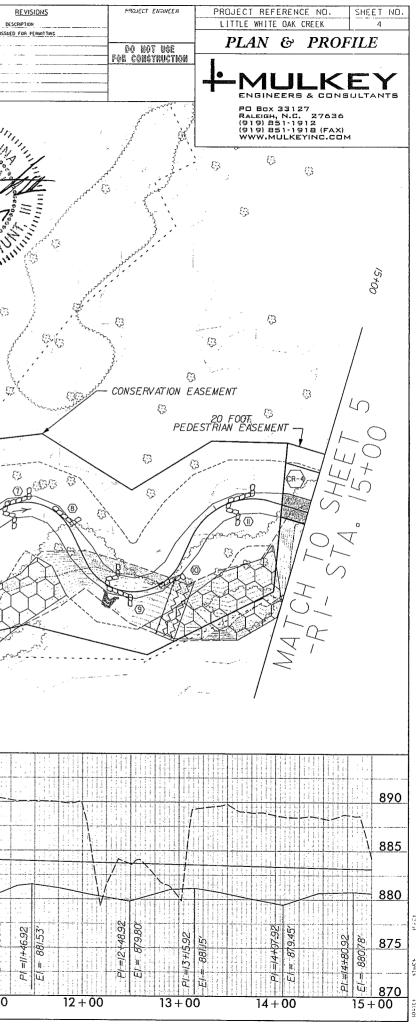
)

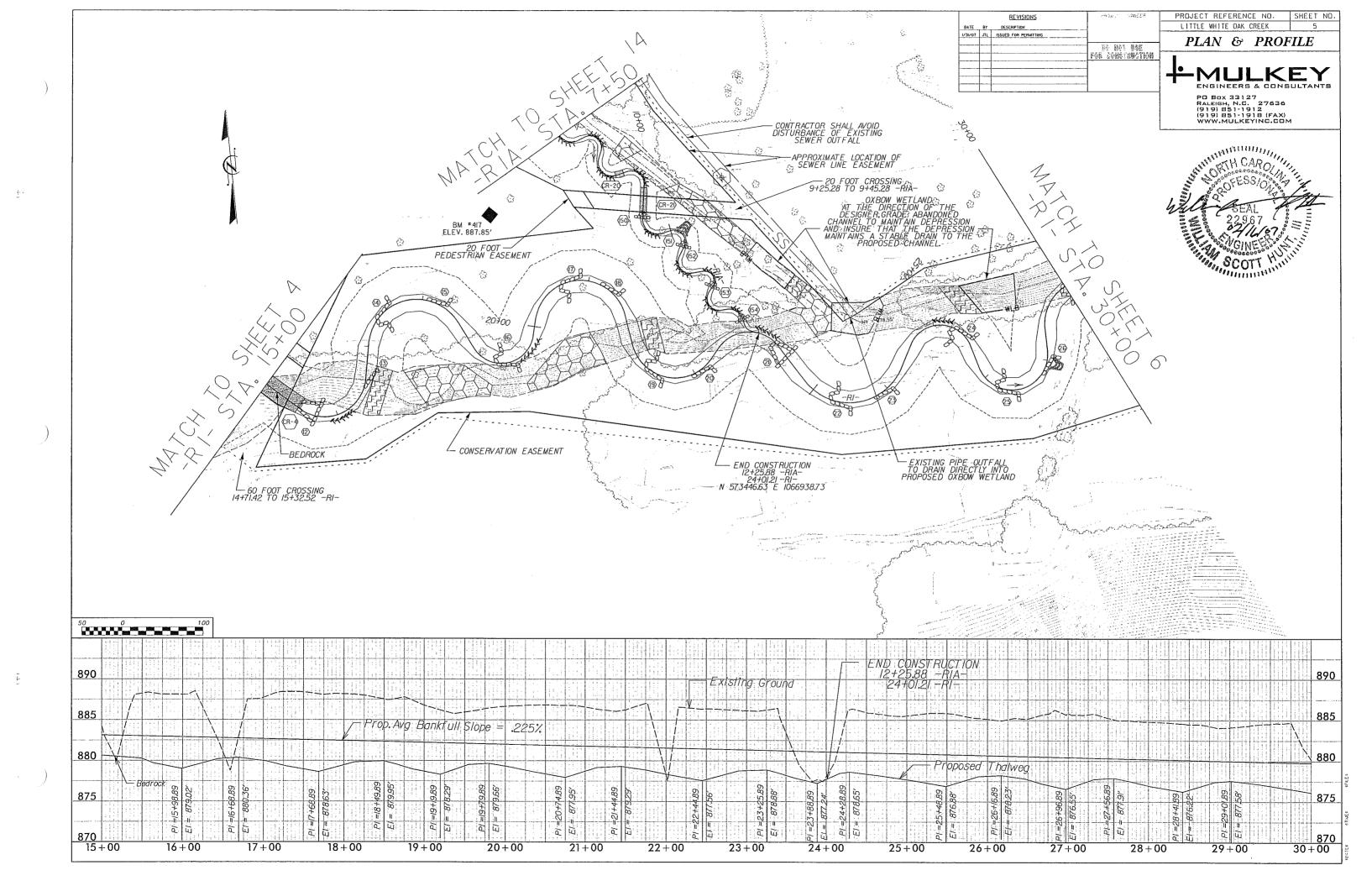
......

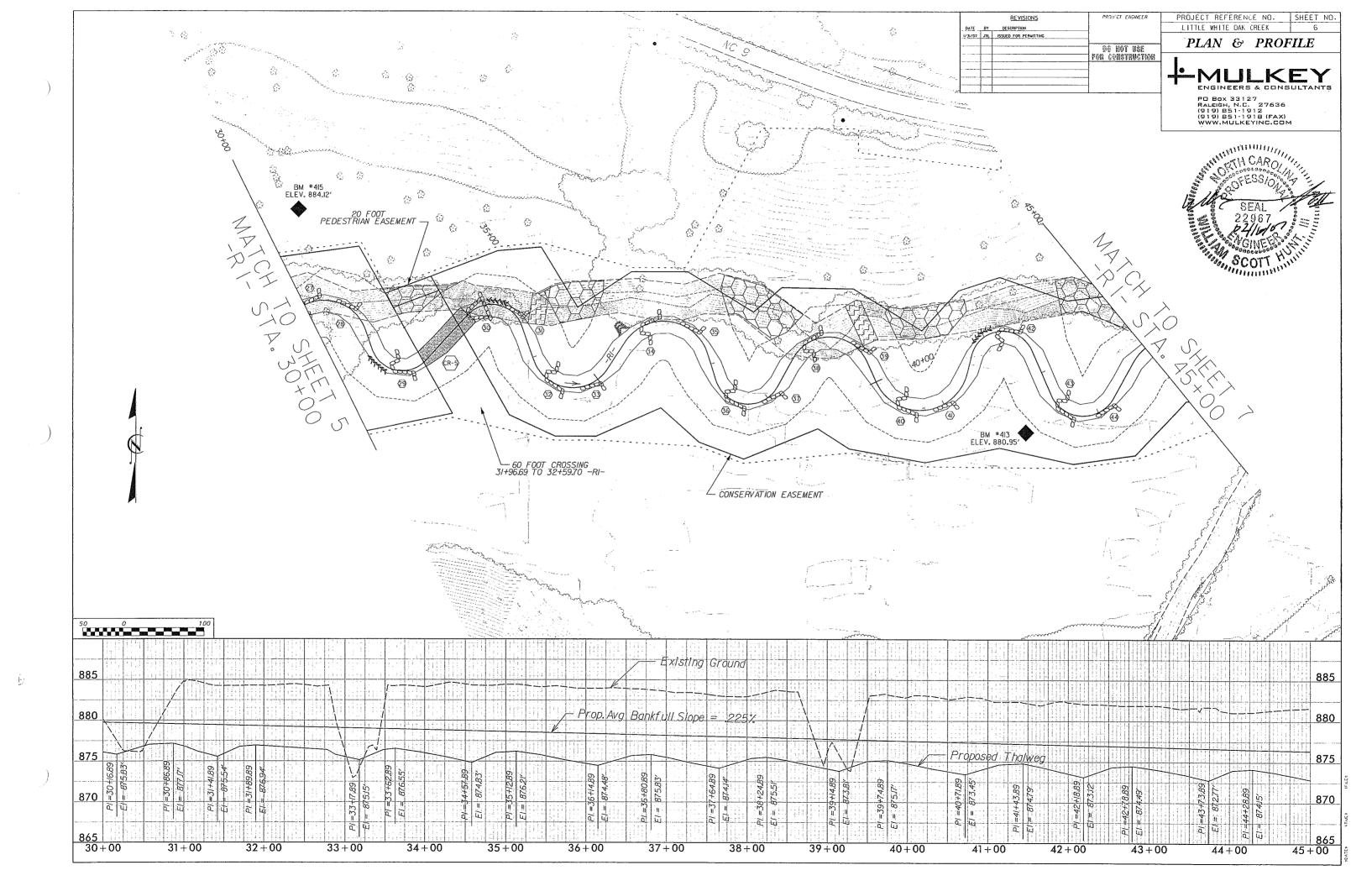
|             |                        |                | Constructed      | d Riffles        |                |                              |
|-------------|------------------------|----------------|------------------|------------------|----------------|------------------------------|
| R1 (Design) |                        |                |                  |                  | R1 (Co         | nstruct)                     |
| Structure   |                        |                | Beginning        | Ending Elevation | Beginning      | Ending Elevation             |
| Number      | Туре                   | Station        | Elevation (ft)   | (ft)             | Elevation (ft) | (ft)                         |
| 1           | C. RIFFLE              | 2+92           | 883.64           | 883.22           |                |                              |
| 2           | C. RIFFLE              | 4+17           | 883.29           | 882.88           |                |                              |
| 3           | C. RIFFLE              | 4+97           | 883.06           | 882.65           |                |                              |
| 4           | C. RIFFLE              | 14+71.42       | 880.78           | 880.28           |                |                              |
| 5           | C. RIFFLE              | 31+96.69       | 876.94           | 876.39           |                |                              |
| 6           | C. RIFFLE              | 48+76.94       | 873.27           | 872.74           |                |                              |
| 7           | C. RIFFLE              | 49+69.17       | 872.86           | 872.44           |                |                              |
| 8           | C. RIFFLE              | 50+87          | 872.53           | 872.13           |                |                              |
| 9           | C. RIFFLE              | 53+62          | 871.85           | 871.41           |                |                              |
| 10          | C. RIFFLE              | 57+03          | 870.66           | 870.24           |                |                              |
| 11          | C. RIFFLE              | 64+21.28       | 869.11           | 868.57           |                |                              |
| -           |                        | P2 /Docian     | <u>;</u><br>1    | v                |                | notruct)                     |
| Structure   |                        | R2 (Design     | Beginning        | Ending Elevation | Beginning      | nstruct)<br>Ending Elevation |
| Number      | Туре                   | Station        | Elevation (ft)   | -                | Elevation (ft) | -                            |
| 12          | C. RIFFLE              | 31+71          |                  | (ft)             |                | (ft)                         |
| 12          | C. RIFFLE              | 31+71          | 870.41           | 869.71           |                |                              |
|             |                        |                | 870.17           | 869.38           |                |                              |
| 14<br>15    | C. RIFFLE<br>C. RIFFLE | 46+03<br>59+42 | 868.12<br>864.90 | 867.38           |                |                              |
| 15          | C. RIFFLE              | 61+05          |                  | 864.02<br>863.75 |                |                              |
| 10          | C. RIFFLE              | 01+05          | 864.54           | 003.75           |                |                              |
|             |                        | R1A (Desig     | n)               | 5                | R1A (Co        | onstruct)                    |
| Structure   |                        | <b>`</b>       | Beginning        | Ending Elevation | Beginning      | Ending Elevation             |
| Number      | Туре                   | Station        | Elevation (ft)   | (ft)             | Elevation (ft) | (ft)                         |
| 17          | C. RIFFLE              | 0+00           | 891.79           | 891.25           |                |                              |
| 18          | C. RIFFLE              | 2+49           | 889.06           | 888.81           |                |                              |
| 19          | C. RIFFLE              | 4+90           | 887.09           | 886.89           |                |                              |
| 20          | C. RIFFLE              | 8+65           | 885.70           | 885.32           |                |                              |
| 21          | C. RIFFLE              | 9+15           | 884.66           | 883.93           |                |                              |
|             |                        |                | -                | 1                |                | •                            |
|             |                        | R2A (Desig     |                  |                  |                | onstruct)                    |
| Structure   | _                      |                | Beginning        | Ending Elevation | Beginning      | Ending Elevation             |
| Number      | Туре                   | Station        | Elevation (ft)   | (ft)             | Elevation (ft) | (ft)                         |
| 22          | C. RIFFLE              | 0+00           | 876.61           | 876.13           |                |                              |
| 23          | C. RIFFLE              | 0+71           | 875.92           | 875.47           |                |                              |
| ;           |                        | R2B (Desig     | :<br>n)          | 1                | DOB (C         | onstruct)                    |
| Structure   |                        |                | Beginning        | Ending Elevation | Beginning      | Ending Elevation             |
| Number      | Туре                   | Station        | Elevation (ft)   | (ft)             | Elevation (ft) | (ft)                         |
| 24          | C. RIFFLE              | 0+68           | 888.68           | 888.40           |                |                              |
| 25          | C. RIFFLE              | 4+41           | 884.42           | 884.17           |                |                              |
| 26          | C. RIFFLE              | 5+75.50        | 882.90           | 881.97           | ······         |                              |
| 20          | C. RIFFLE              | 8+24           | 880.05           | 879.80           |                |                              |
| 28          | C. RIFFLE              | 9+18           | 878.98           | 879.80           |                | <u> </u>                     |
| 29          | C. RIFFLE              | 10+56          | 877.42           | 877.18           |                | · · · · · ·                  |
| 20          |                        | 10+50          | 011.42           | 011.10           |                | 1                            |

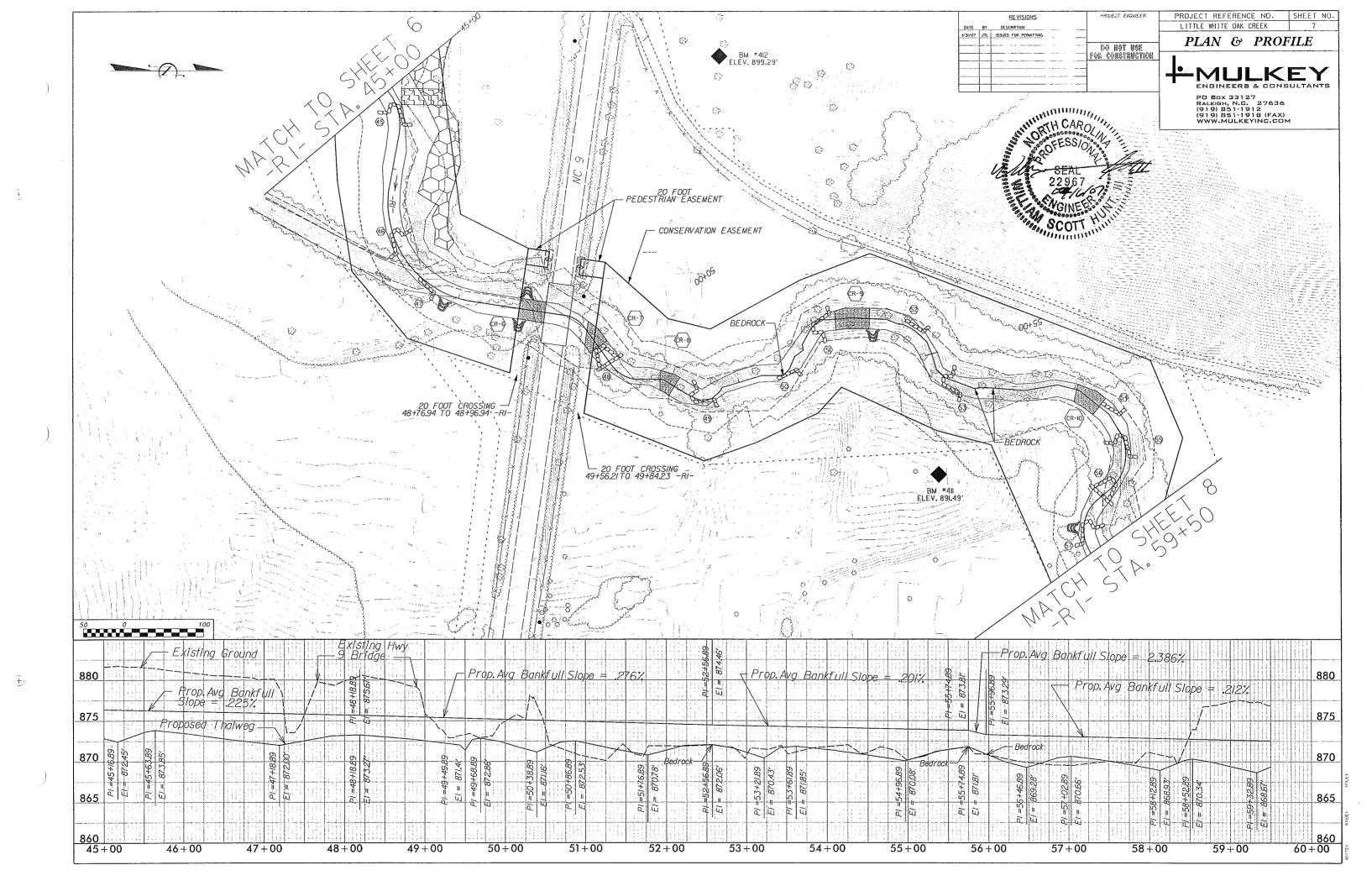
|           |           | R2D (Co | onstruct)      |                  |                |                  |
|-----------|-----------|---------|----------------|------------------|----------------|------------------|
| Structure |           |         | Beginning      | Ending Elevation | Beginning      | Ending Elevation |
| Number    | Туре      | Station | Elevation (ft) | (ft)             | Elevation (ft) | (ft)             |
| 30        | C. RIFFLE | 0+00    | 871.97         | 871.66           |                |                  |
| 31        | C. RIFFLE | 3+35    | 870.24         | 870.03           |                |                  |
| 32        | C. RIFFLE | 5+16    | 868.55         | 868.23           |                |                  |

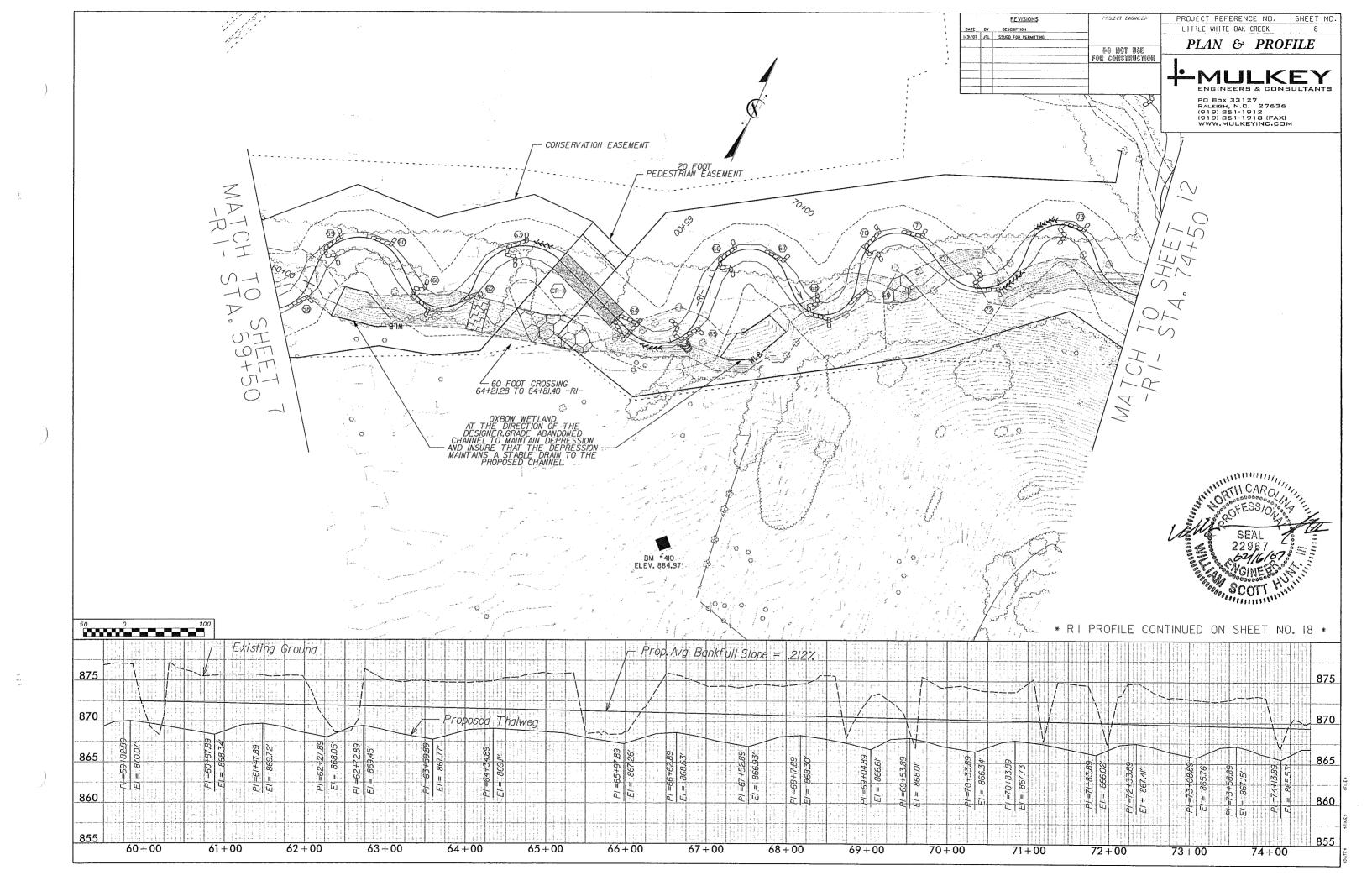
| R2D (Design)        |            |          |                           | R2D (Construct)            |                               |                                |                              |
|---------------------|------------|----------|---------------------------|----------------------------|-------------------------------|--------------------------------|------------------------------|
| Structure<br>Number | Туре       | Station  | Thalweg<br>Elevation (ft) | Bankfull<br>Elevation (ft) | Constructed<br>Elevation (ft) | Constructed Arm<br>Angle ( ° ) | Constructed Arm<br>Slope (%) |
| 180                 | Cross Vane | 00+25.94 | 871.67                    | 872.57                     | **                            |                                |                              |
| 181                 | J-Hook     | 00+39.11 | 871.52                    | 872.50                     |                               |                                |                              |
| 182                 | Rock Vane  | 02+25.50 | 870.47                    | 871.53                     |                               | 1                              |                              |
| 183                 | Rock Vane  | 03+97.60 | 869.48                    | 870.64                     |                               |                                |                              |
| 184                 | Cross Vane | 04+22.07 | 869.72                    | 870.52                     |                               |                                |                              |
| 185                 | Rock Vane  | 04+92.72 | 868.62                    | 869.68                     |                               |                                |                              |
| 186                 | Rock Vane  | 05+88.51 | 866.99                    | 868.04                     |                               |                                |                              |
| 187                 | Cross Vane | 06+06.00 | 866.93                    | 867.74                     |                               |                                |                              |
| 188                 | Cross Vane | 06+95.00 | 865.35                    | 866.21                     |                               |                                |                              |
| 189                 | Rock Vane  | 07+23.05 | 864.63                    | 865.73                     |                               |                                |                              |
| 190                 | Cross Vane | 07+82.00 | 863.91                    | 864.71                     |                               |                                |                              |
| 191                 | Rock Vane  | 08+12.92 | 863.16                    | 864.18                     |                               | 1                              |                              |

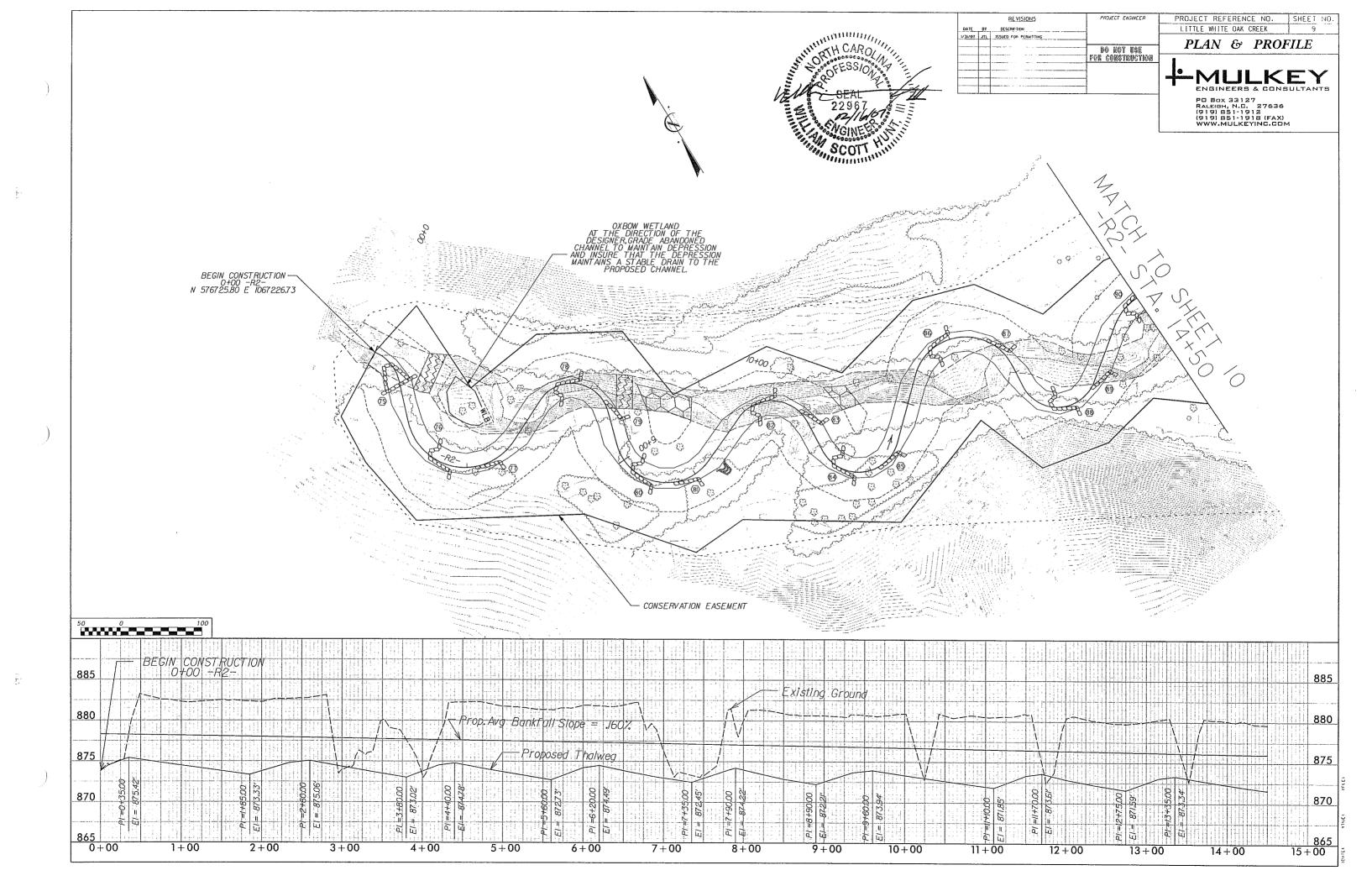




| REVISIONS<br>DESCRIPTION<br>SUED FOR PERMITTING | PROJECT ENGMEER  | PROJECT REFERENCE ND.<br>LITTLE WHITE OAK CREEK                                                    | SHEET NO.<br>3D |
|-------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------|-----------------|
|                                                 | <br>Do not use   | STRUCTURE TA                                                                                       | BLES            |
|                                                 | FOR CONSTRUCTION |                                                                                                    |                 |
| -                                               |                  | PO Box 33127<br>Raleigh, N.C. 27636<br>(919) 851-1912<br>(919) 851-1918 (FAX)<br>WWW.MULKEYINC.CDI |                 |

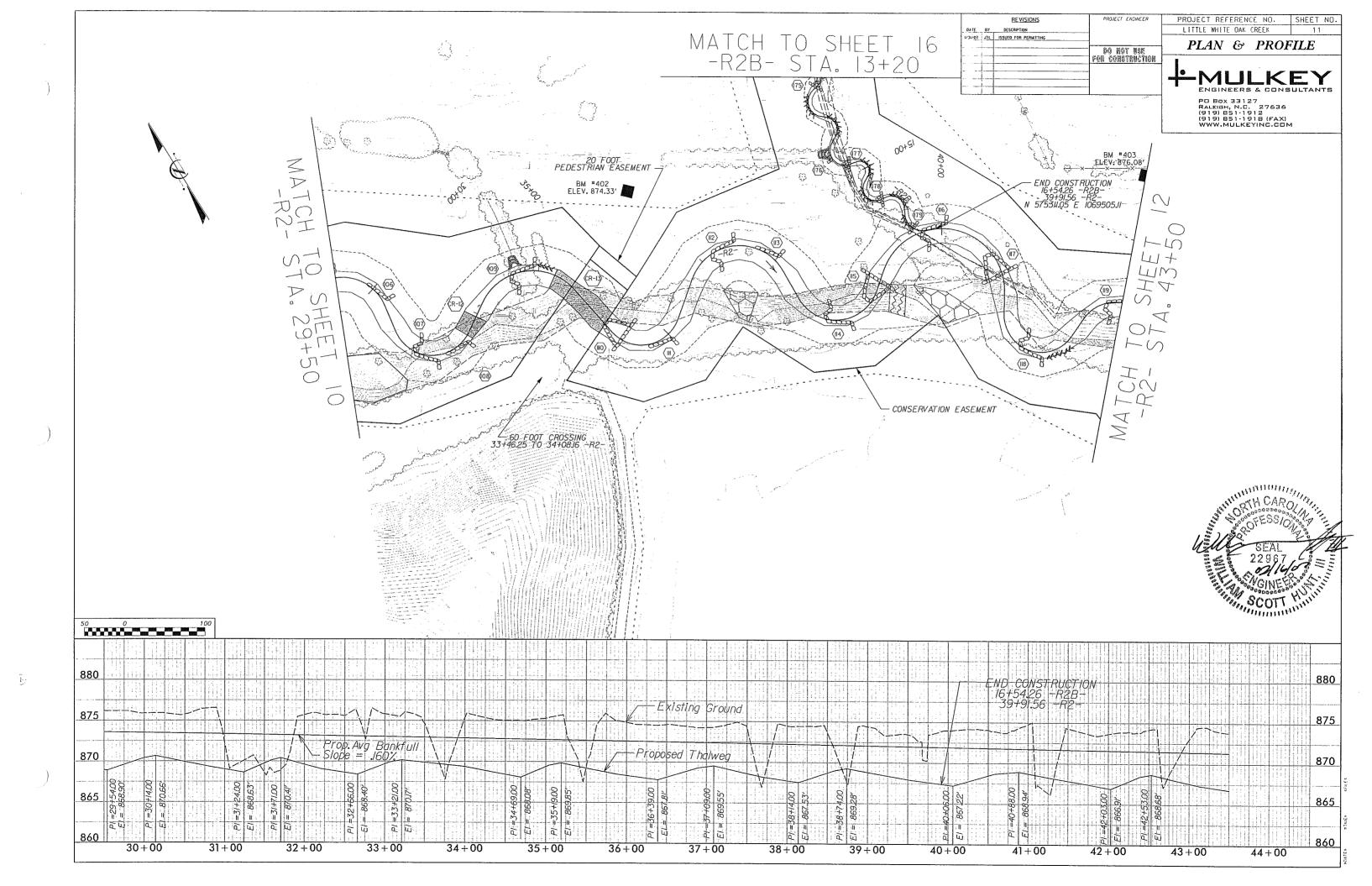

¢11,153

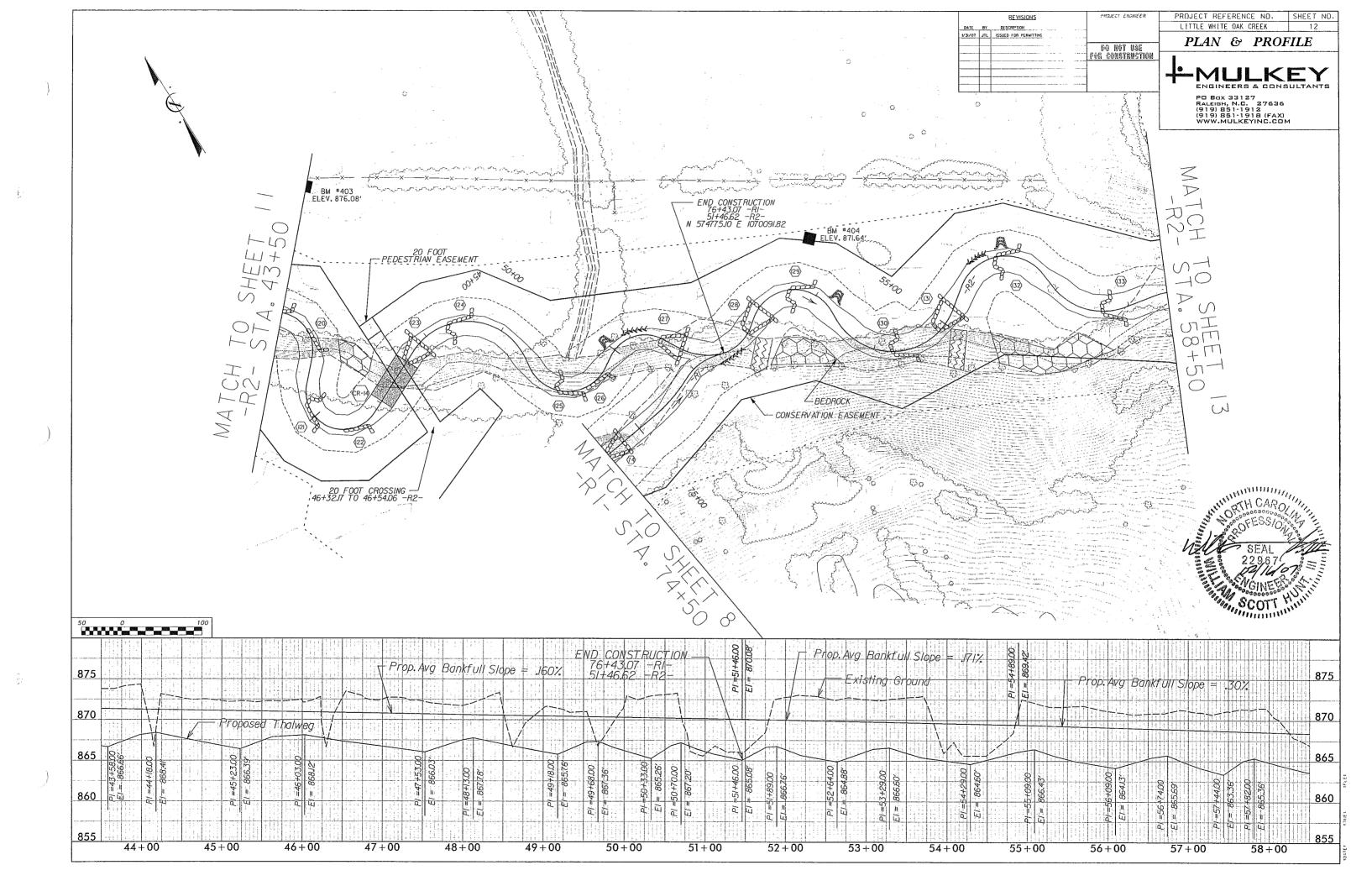

Eu 164

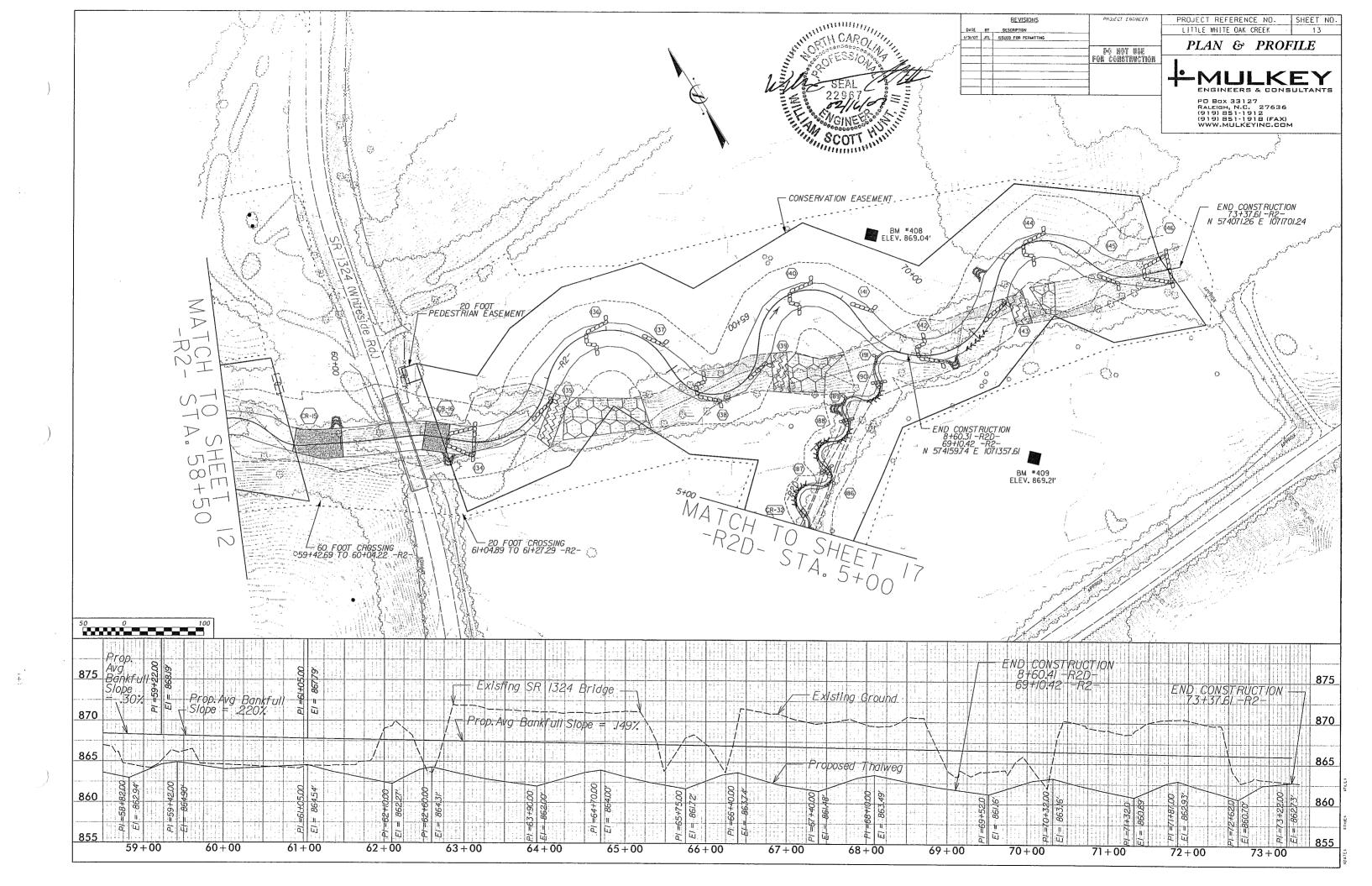

| r<br>J |                                                                                                                                                                                                                                               | BEGIN CONSTRUCTION<br>N 574126.57 E 1065514.82                                          |                                                                          | BM *419<br>ELEV. 891.33' |                  | a a a a a a a a a a a a a a a a a a a            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A Participant   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------|------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|        |                                                                                                                                                                                                                                               |                                                                                         | BEDROCK                                                                  | BEDROC                   |                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
|        | 50       0       10         BE GIN       CO         890       0       0         885       0       0         880       0       1         880       0       1         875       0       1         870       0       1         0       1       0 | DNSTRUCTION<br>0 -RI-<br>Prop. Avg Bankfull<br>Bedrock<br>0076+7=14<br>0076+88 = 13<br> | PI = 3+72.00 $EI = 881.92'$ $EI = 883.22'$ $EI = 883.22'$ $PI = 4+77.00$ |                          | $\frac{1}{7+00}$ | Prop. Av<br>Prop. Av<br>51/008 = 19<br>8+00 9+00 | Existing Ground $Bankf ull Slope = .225%$ $Proposed Thalweg$ $Strice Bankf ull Slope = .225%$ $Froposed Thalweg$ $Strice Bankf ull Slope = .225%$ $Strice Bankf ull Slope = .225%$ $Strice Bankf ull Slope = .225%$ | $B_{I} = E_{I}$ |

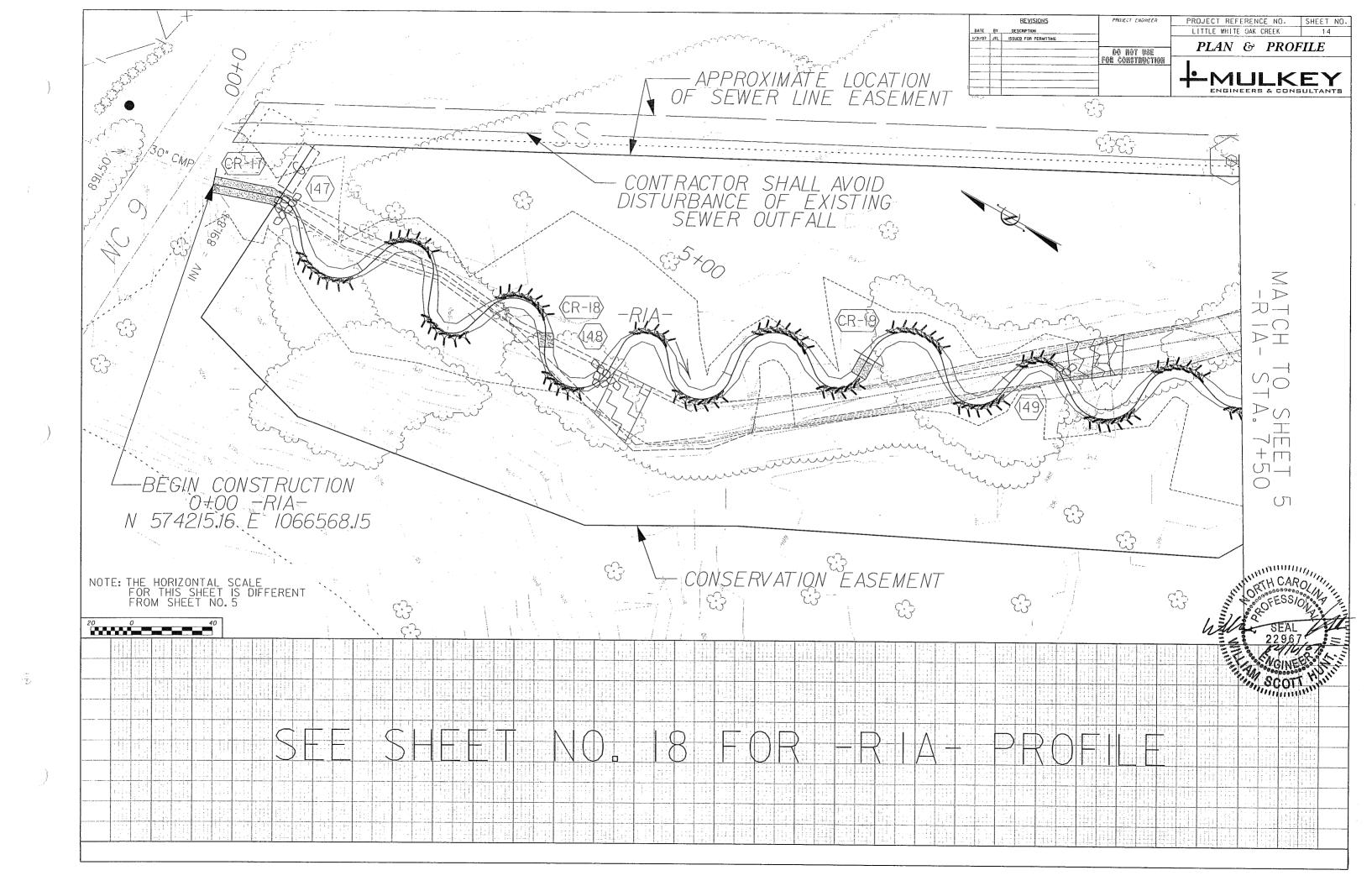


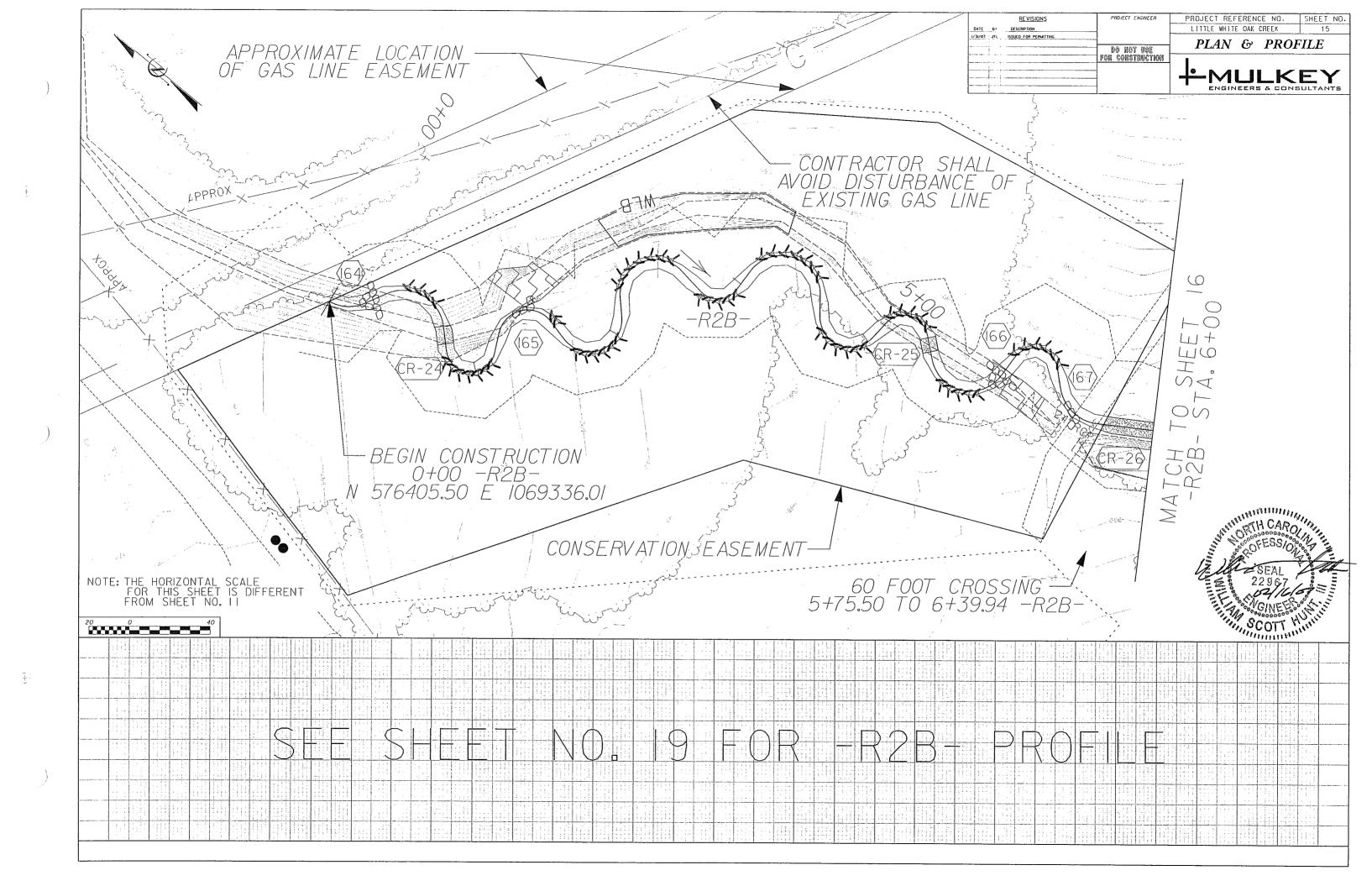


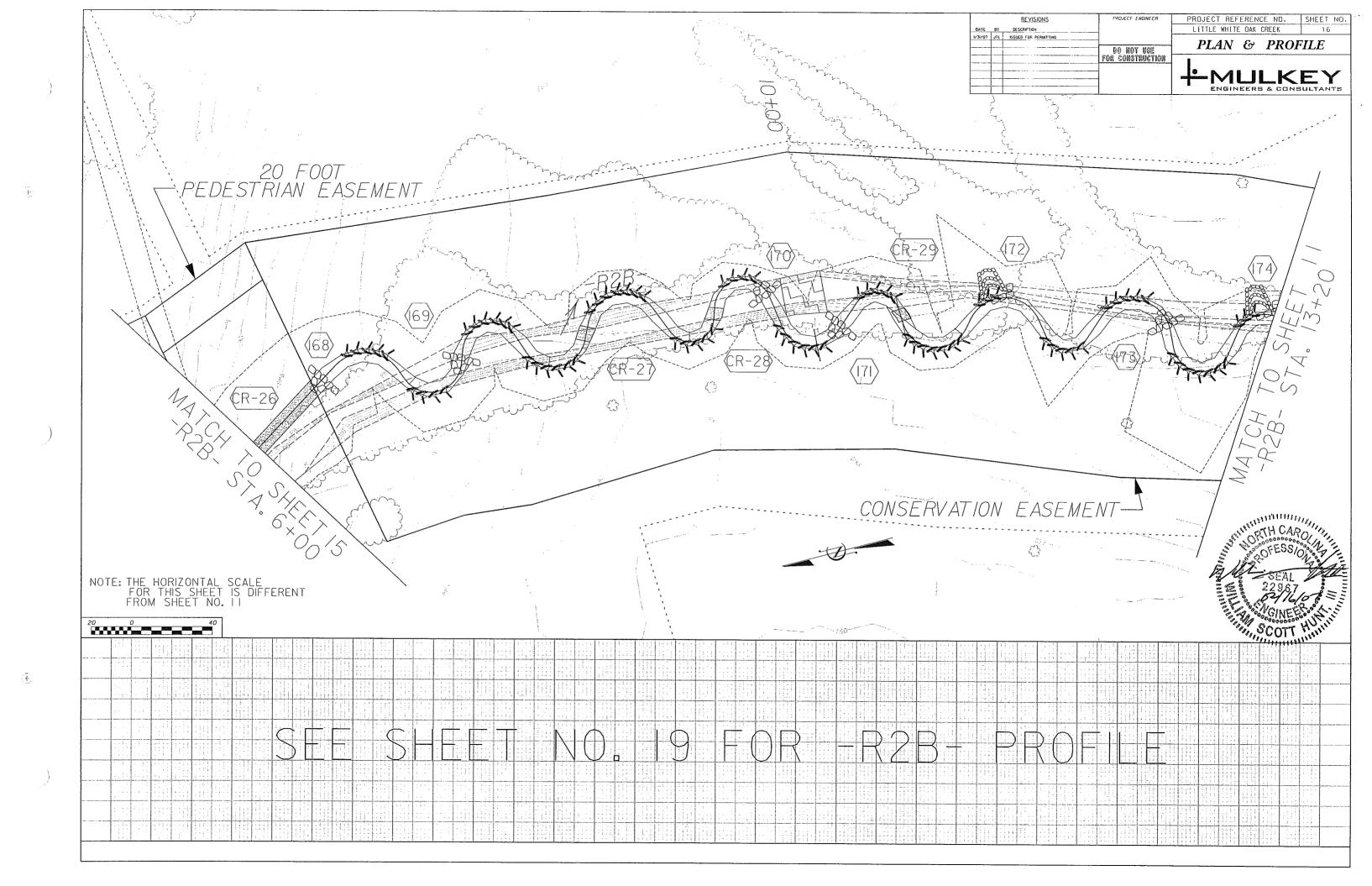



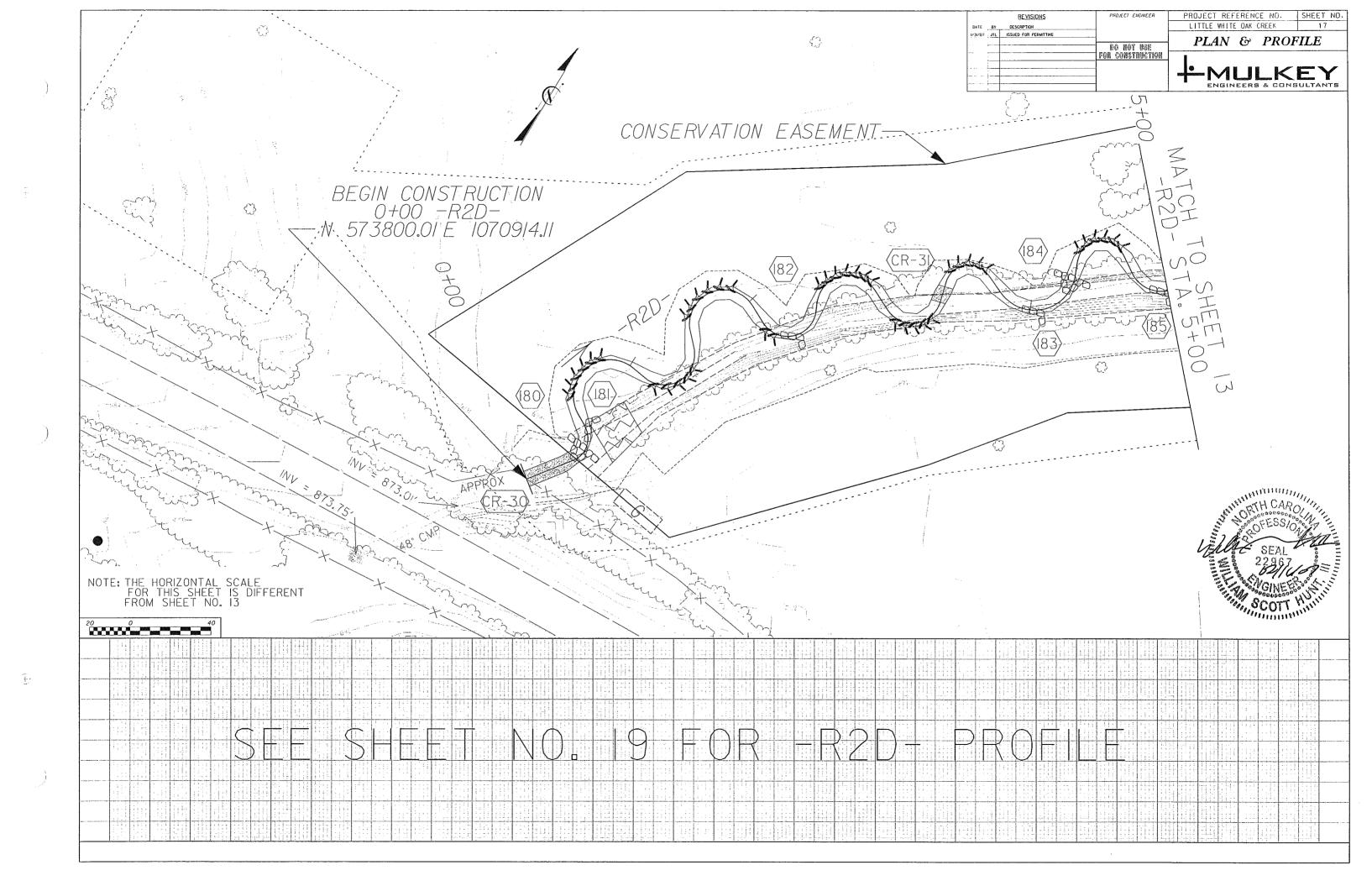



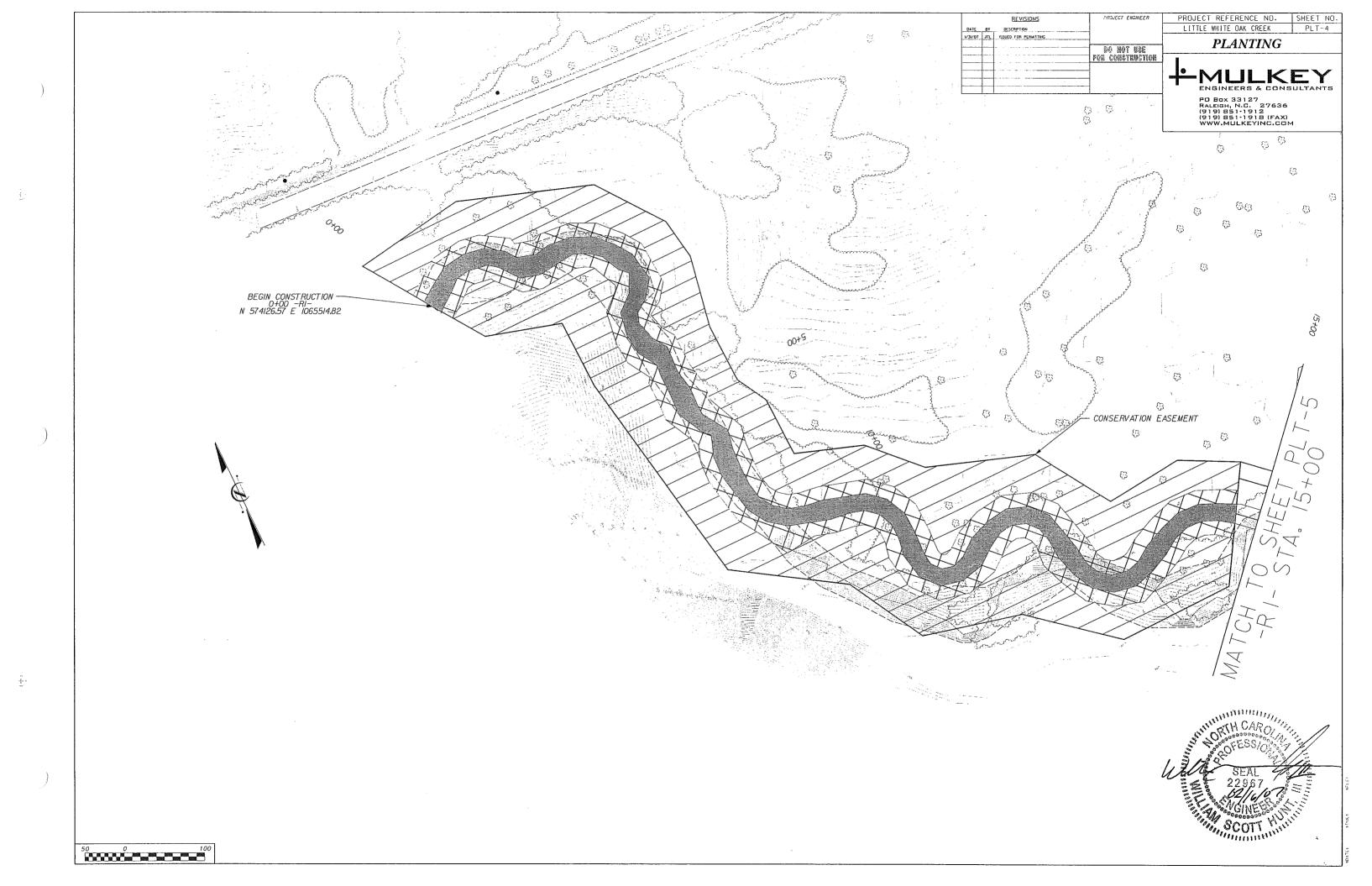



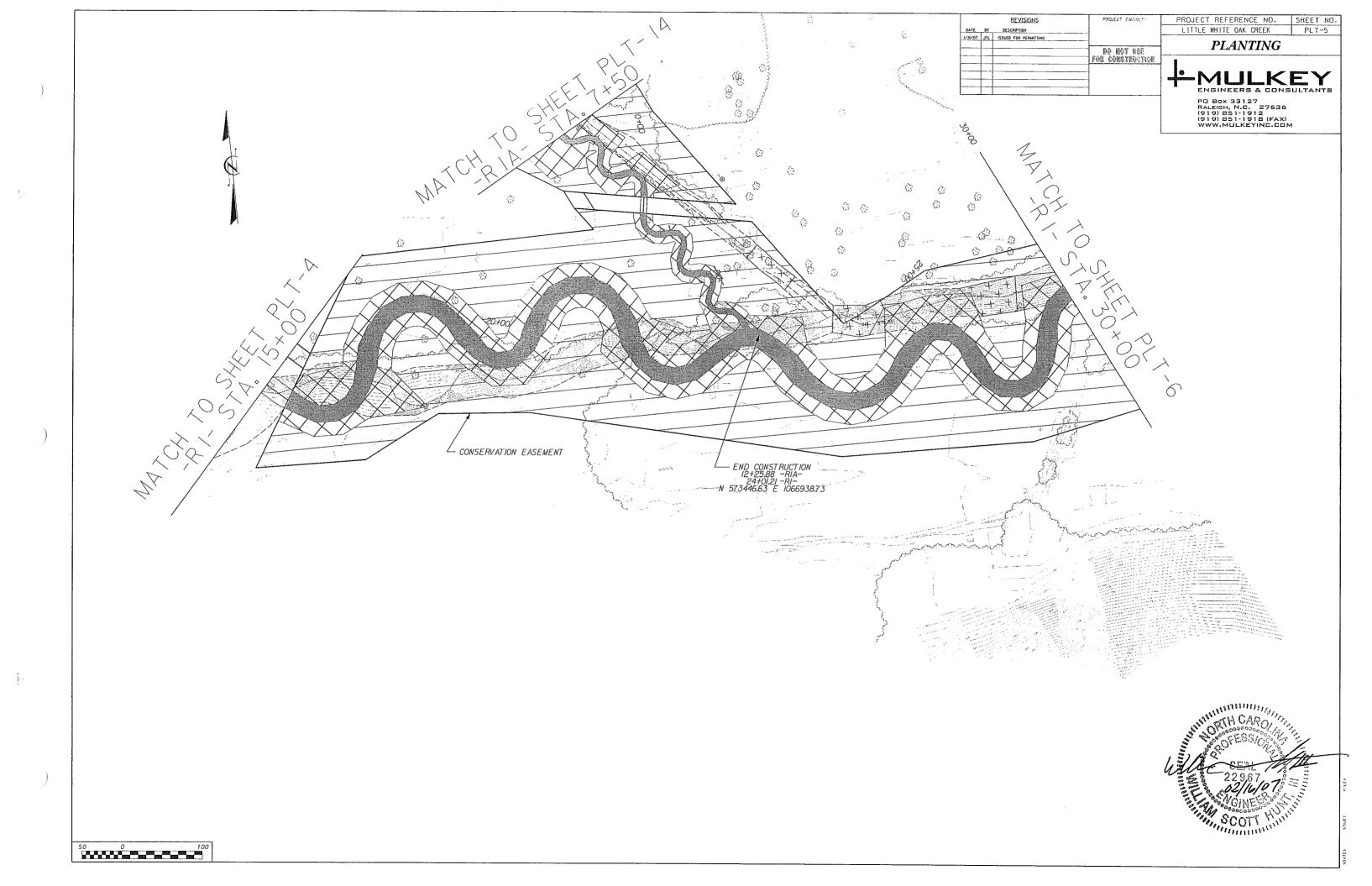


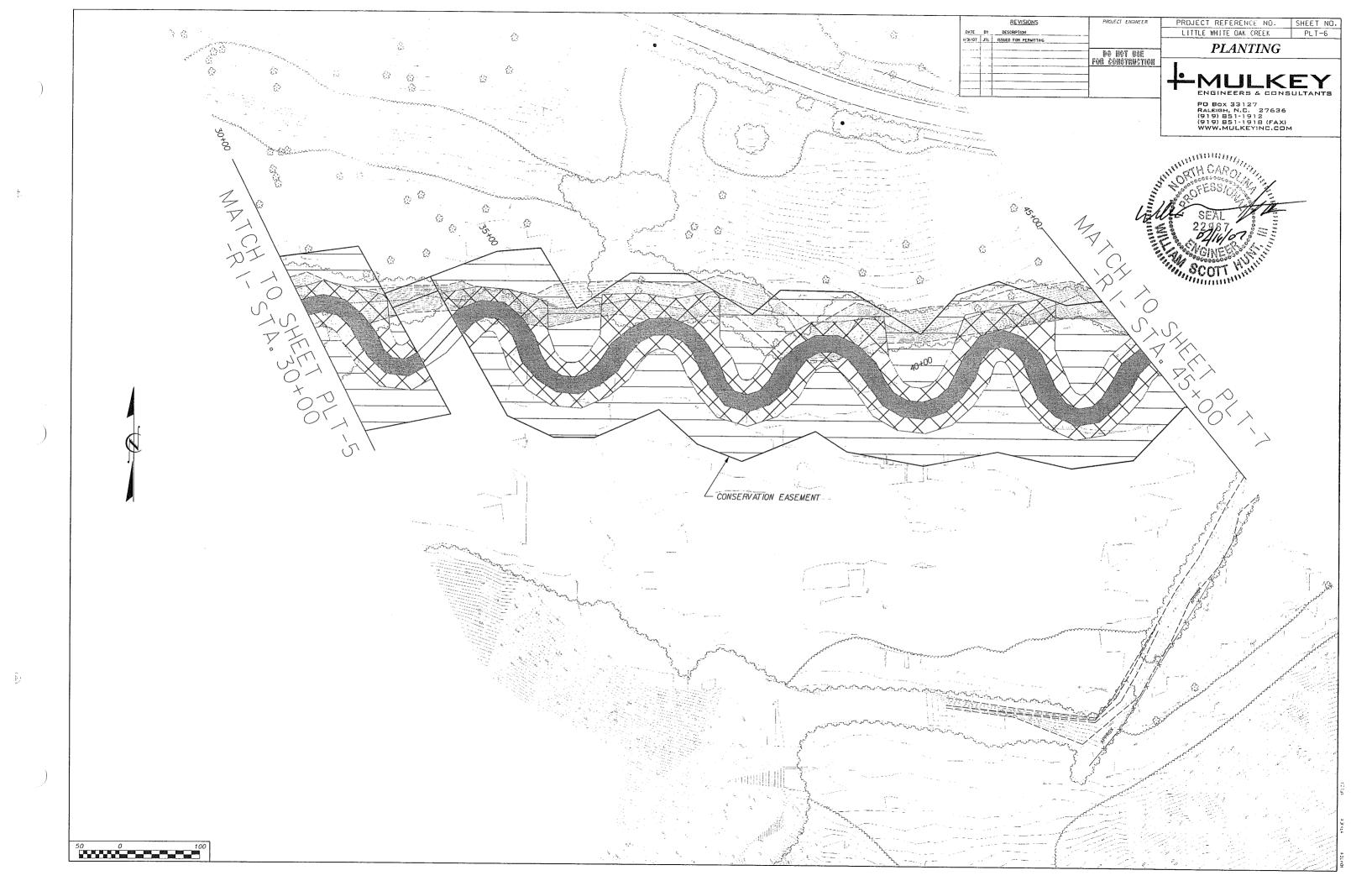


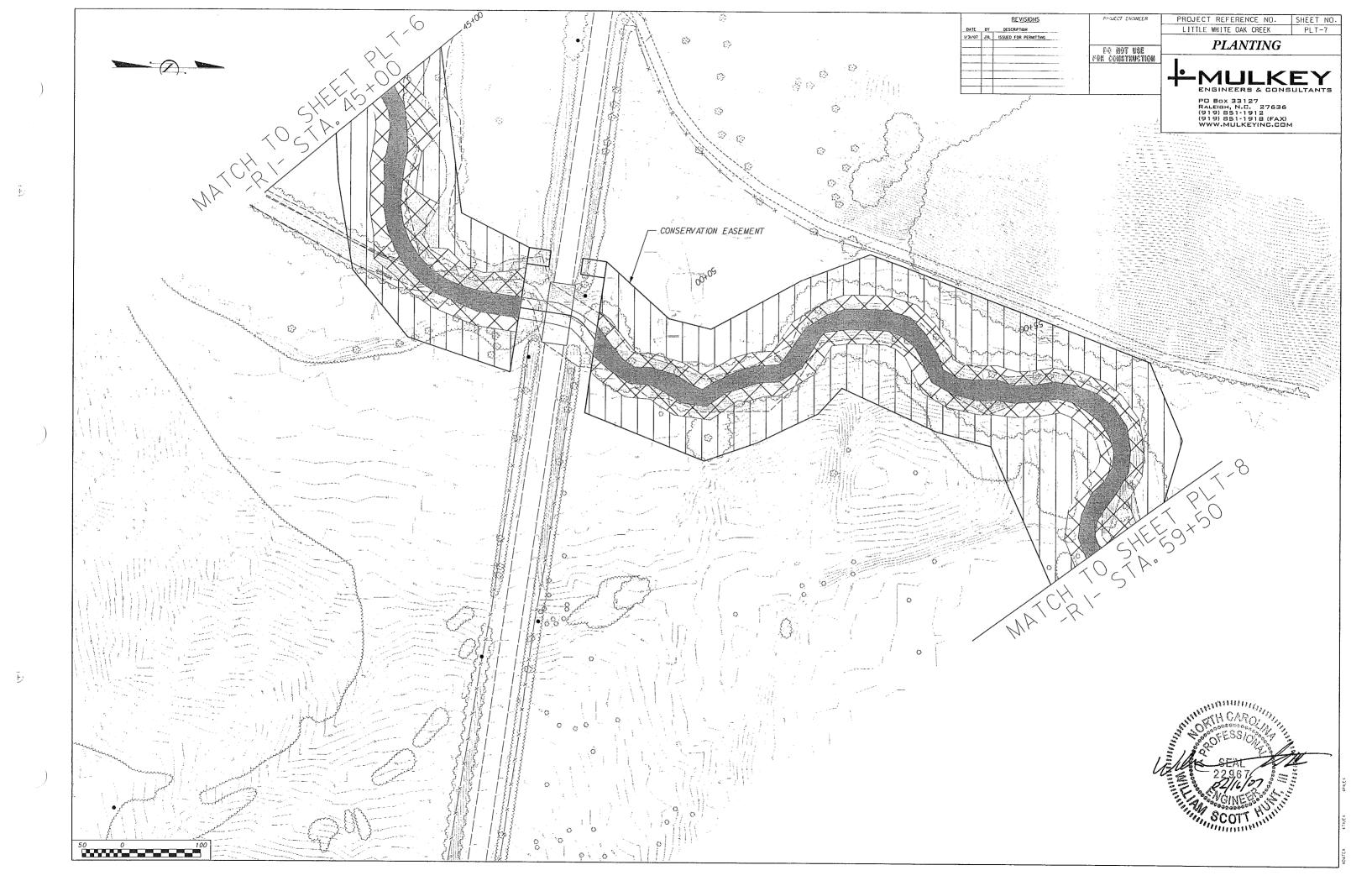


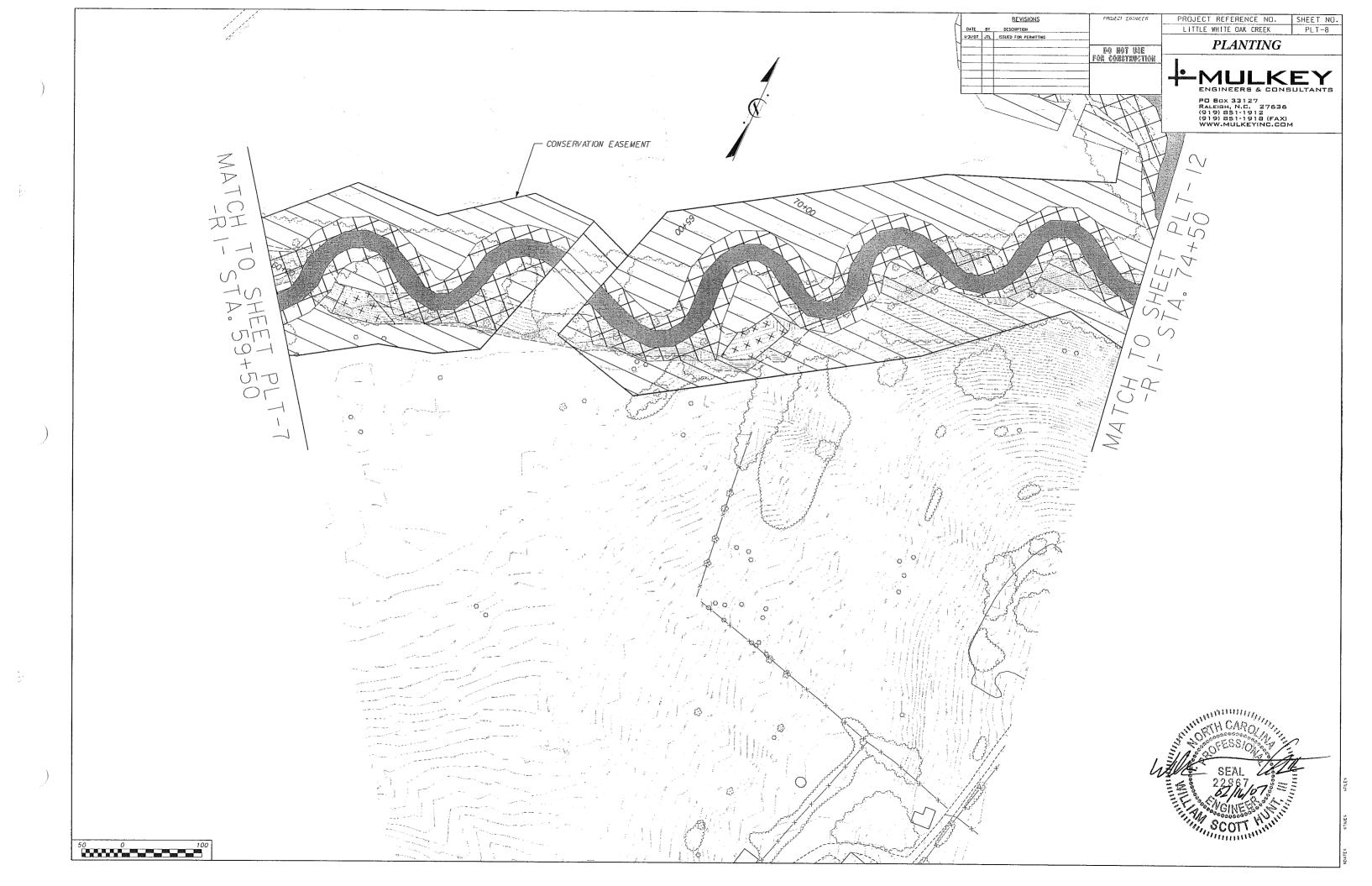


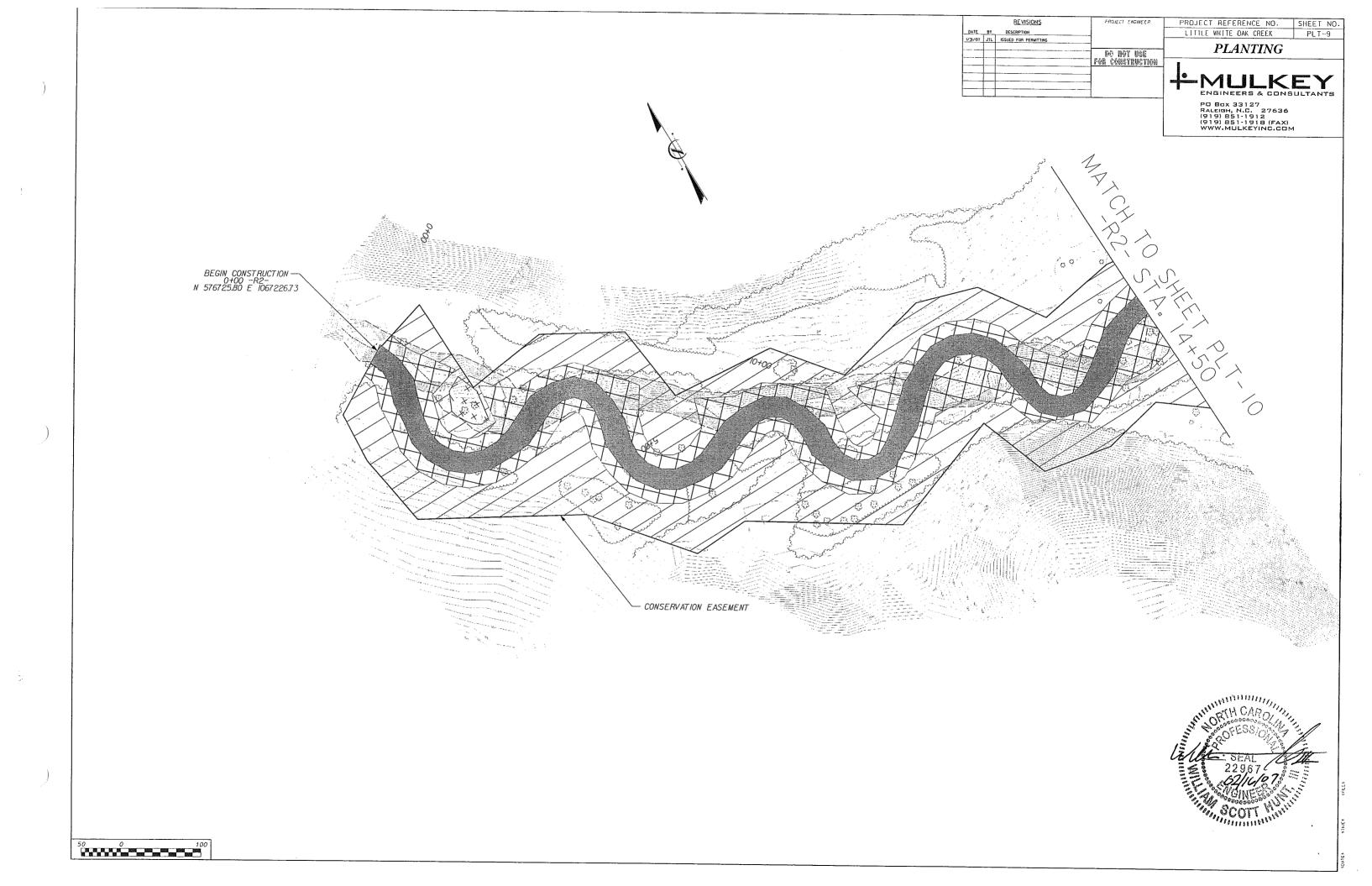



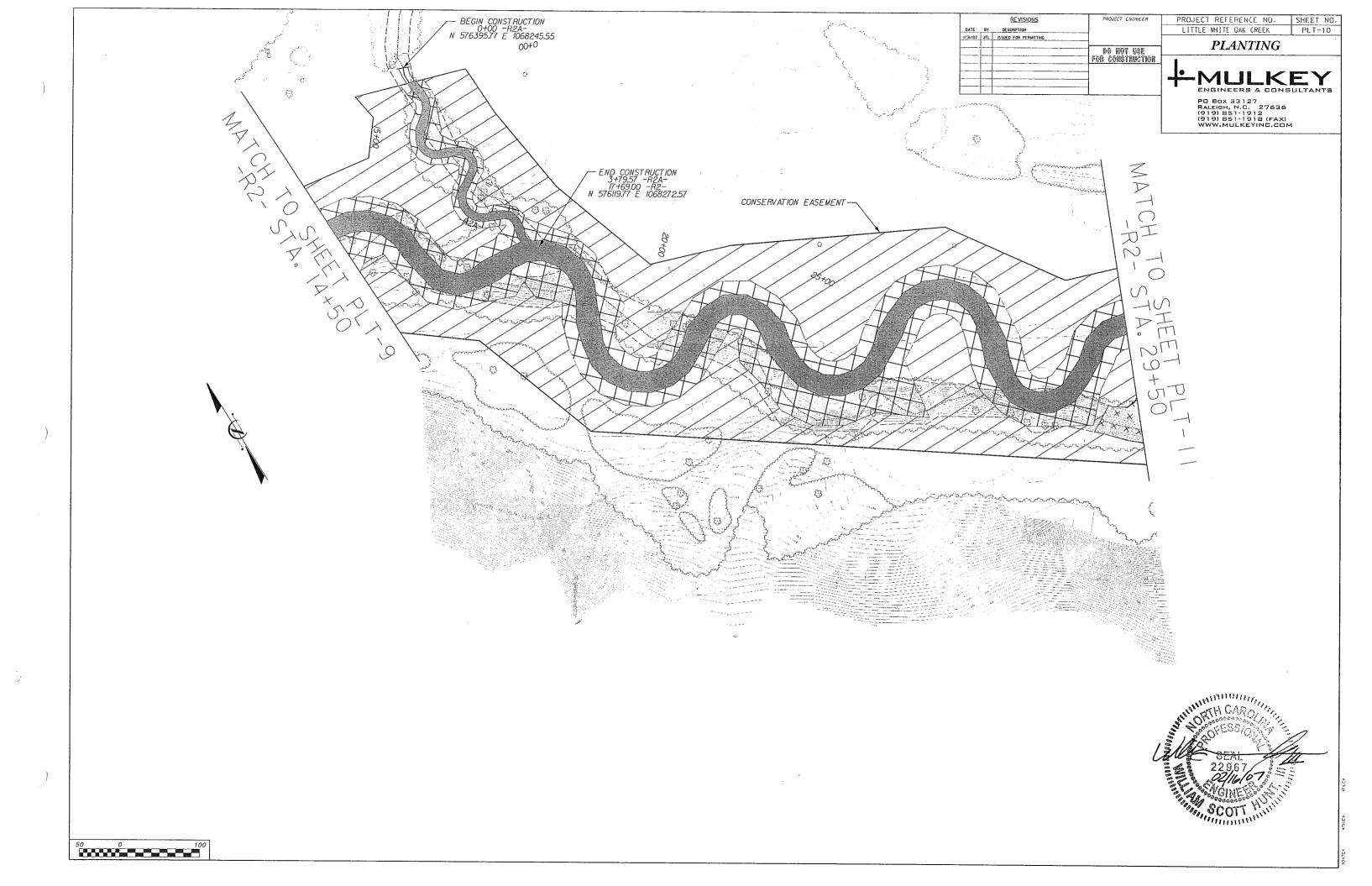


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROPOSED                                              | PROFILES                                               | HE VISIONS           DATE         BY         DESCRIPTION           1/31/07         JTL         ISSUED FOR PERMITING | PROJECT ENGINEER PROJECT REFERENCE NO. SHE<br>LITTLE WHITE DAK CREEK<br>PROPOSED PROFIL |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | Munimum Man                                            |                                                                                                                     |                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | CEESSION THE                                           |                                                                                                                     |                                                                                         |
| $\frac{1}{1-0} + \frac{1}{1-0} + \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                        |                                                                                                                     |                                                                                         |
| $\frac{1}{1000} + \frac{1}{1000} + \frac{1}{10000} + \frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 $F_{\rm risting}$ Crowd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                        |                                                                                                                     |                                                                                         |
| $\frac{1}{1+0} + \frac{1}{1+0} + \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | SCOTT Kint                                             |                                                                                                                     |                                                                                         |
| $\frac{1}{25+00} - \frac{1}{72+00} - \frac{1}{72+0} - $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRUCTION                                              |                                                        |                                                                                                                     |                                                                                         |
| <u>x + 0</u><br><u>x </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-\dot{R}\dot{2}$                                     |                                                        |                                                                                                                     |                                                                                         |
| $\frac{1}{75+00} = \frac{1}{76+00} = \frac{1}{77+00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E h Proposed Thalweg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                        |                                                                                                                     |                                                                                         |
| 75+00 77+00<br>Prips Arg Dontrial Stope + 10052<br>Prips Arg Dontrial Stope + 0.57th<br>Prips Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                        |                                                                                                                     |                                                                                         |
| Propried and and a state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                        |                                                                                                                     |                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | EI = 878039                                                                                                         | END CONSTRUCTION<br>12+25-88 -RIA<br>24+01.21-RI-                                       |
| Existing Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Prop. Avg Bankfull & Prop. Avg Bankfull<br>Slope = 1.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R2A                                                   |                                                        |                                                                                                                     |                                                                                         |
| V Existing Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                        |                                                                                                                     |                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Existing Ground                                       |                                                        |                                                                                                                     |                                                                                         |
| or bolined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $e_1 = 0.77,000$ $e_1 = 0.77,000$ $e_1 = 0.77,000$ $e_1 = 0.75,00$ $e_2 = 0.75,00$ $e_1 = 0.75,00$ $e_1 = 0.75,00$ $e_2 = 0.75,00$ $e_1 = 0.75,00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |                                                        |                                                                                                                     |                                                                                         |
| END CONSTRUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11 = 875.<br>11 = 875.<br>12 = 287.<br>12 = 287.<br>12 = 287.<br>13 = 287.<br>14 = 287.<br>15 = 287. |                                                       |                                                        |                                                                                                                     |                                                                                         |
| $\frac{1}{2} + \frac{1}{2} + \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | END CONSTRUCTION                                      |                                                        |                                                                                                                     |                                                                                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{DLGIN}{O+OO} = R2A + \frac{CONSTRUCTION}{CONSTRUCTION}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11 TPY,UU =KZ+                                        |                                                        |                                                                                                                     |                                                                                         |

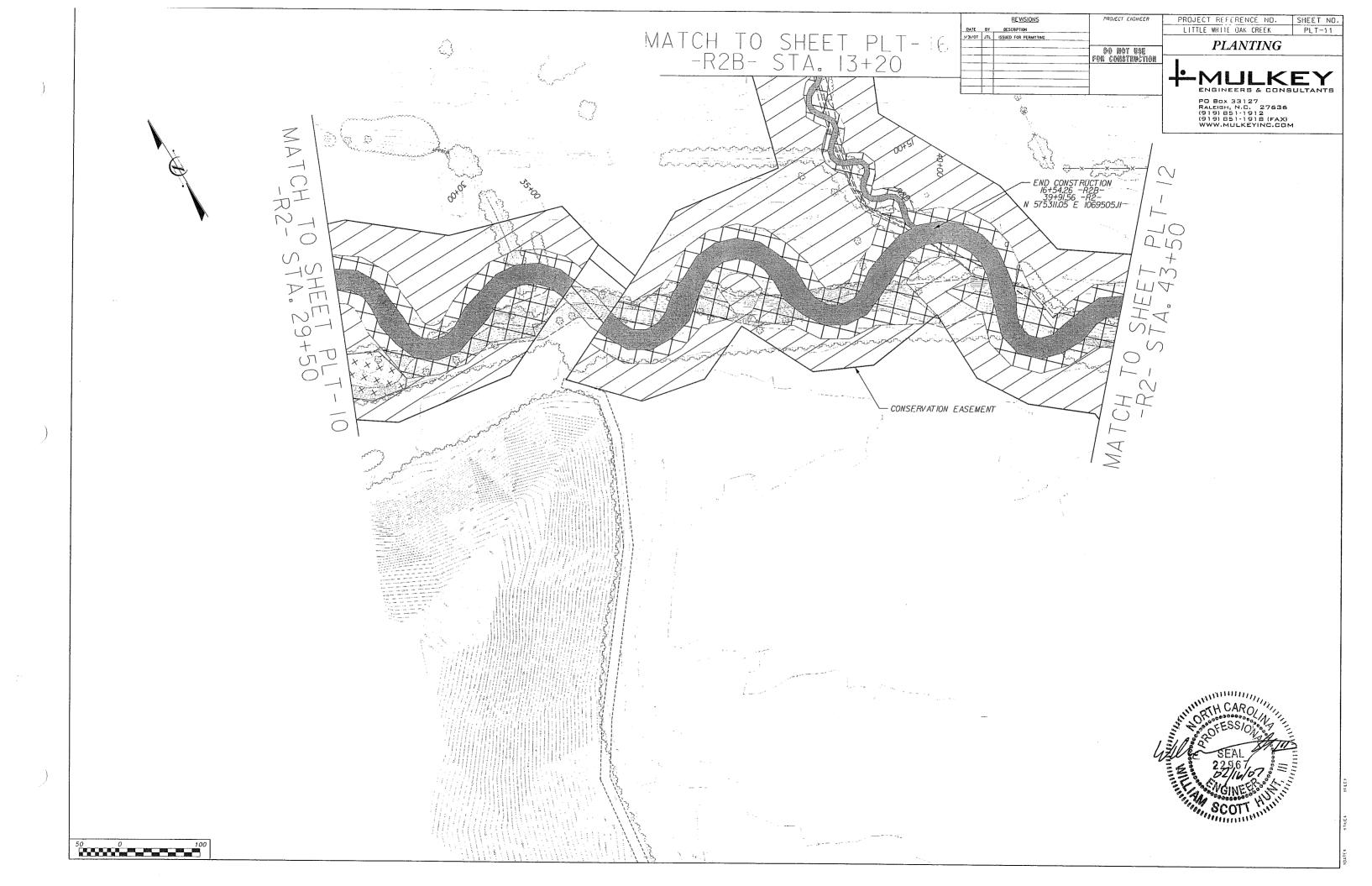

1.

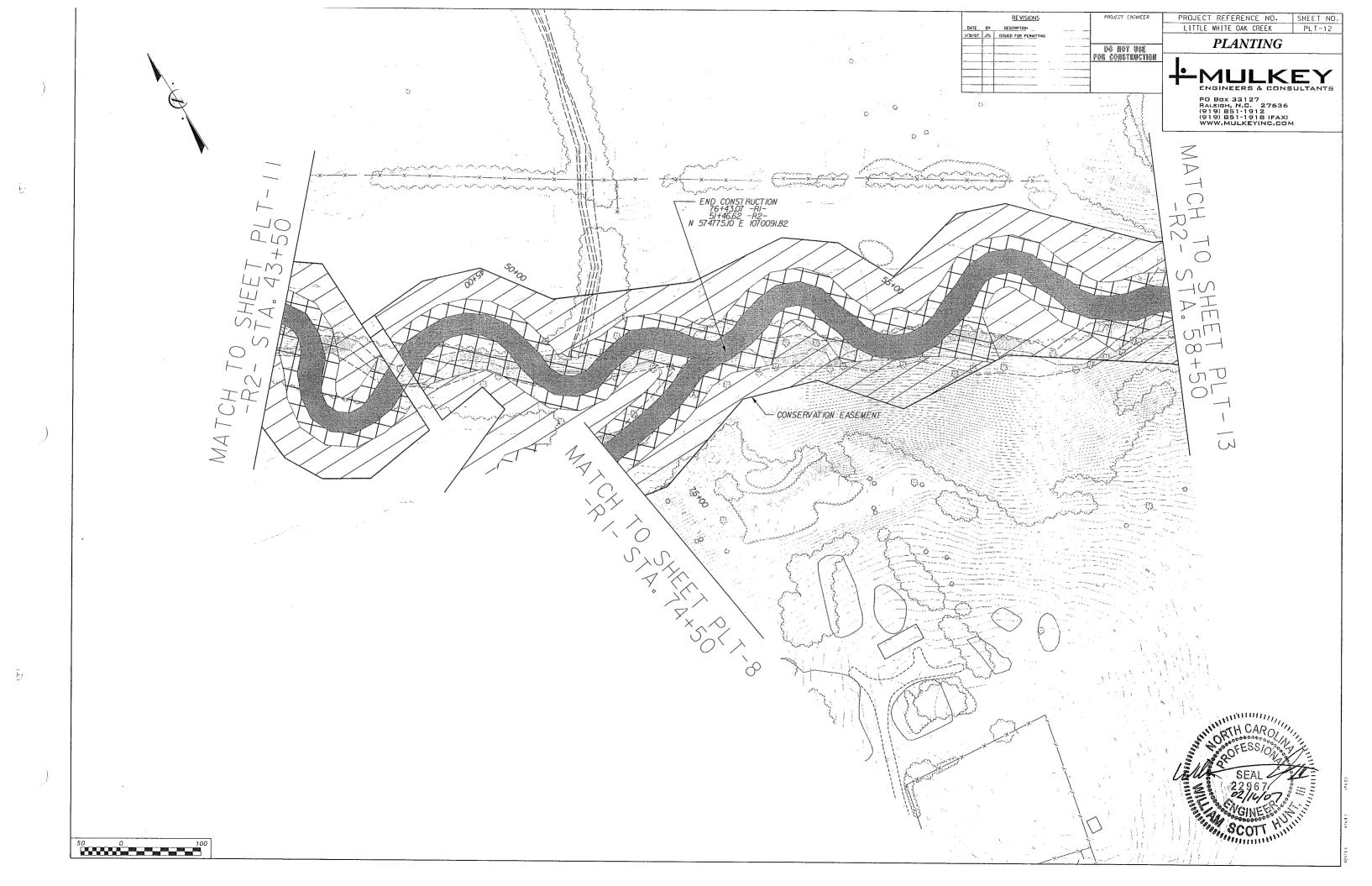

|                                                       | PROPOSED PROF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                          | DATE BY DESCRIPTION<br>L/3/07 JTL ISSUED FOR PERMITTING | PROJECT REFERENCE ND. SHEET N<br>LITTLE WHITE OAK CREEK 19<br>PROPOSED PROFILES |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------|
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TH CAROL                                                 |                                                         | HORIZONTAL SCALE                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | = 883349<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Proposed<br>Propos | $\frac{22967}{1000} = \frac{11}{1000}$                   | 11+00 12+00                                             |                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Existing Ground<br>END CONSTRUC<br>16+54.26 -R2<br>39+91.56 -R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |                                                         |                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | <b>R2</b> $P_{I=2}^{I=2}$ $P_{I=2}$                                                                                                                                                                                                                                                                                                                                                                                                                    | ×<br><i>END</i> -CONST-RUG<br>8+60.41-R2D<br>69+10.42-R2 |                                                         |                                                                                 |

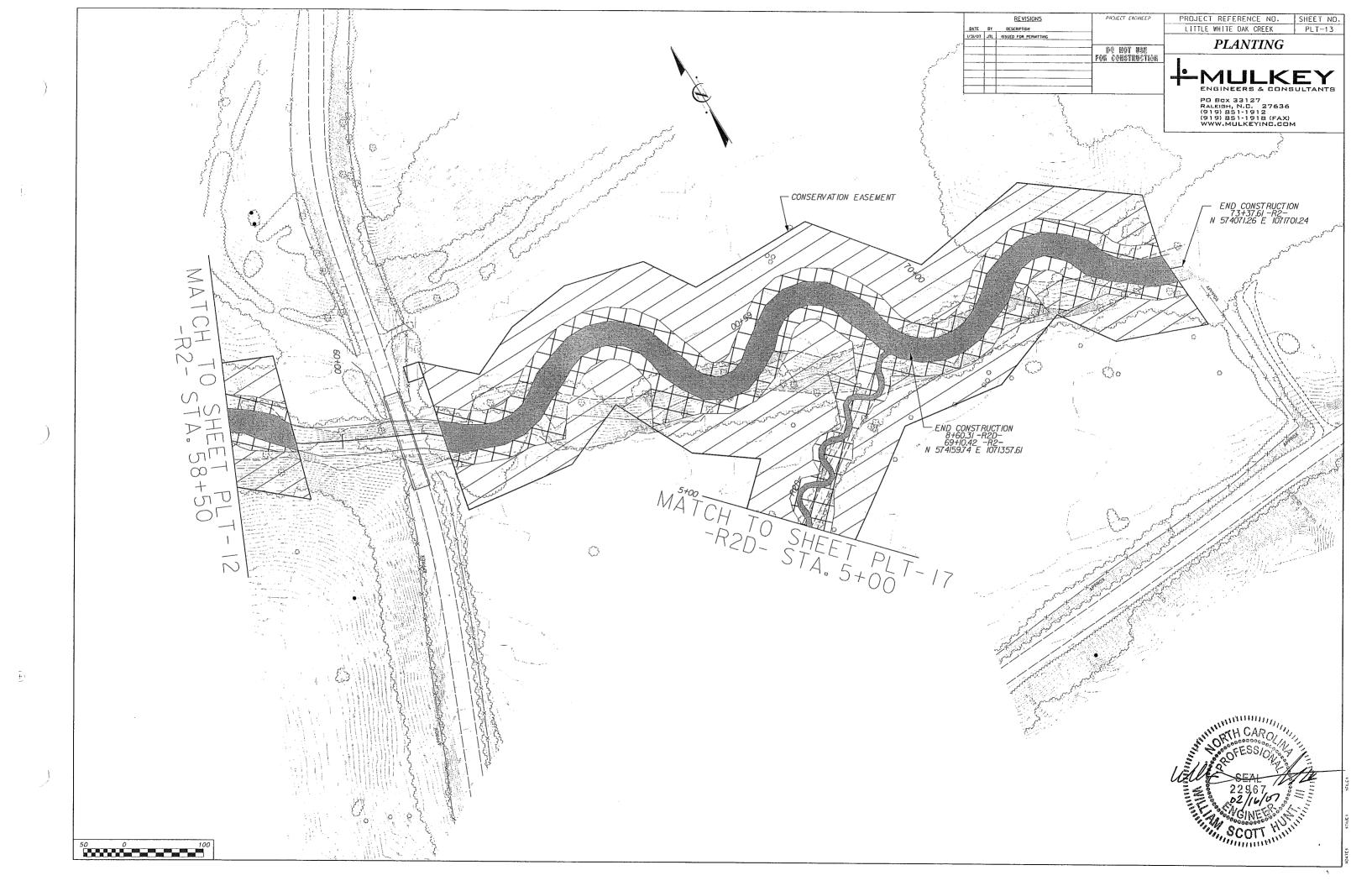

(f)

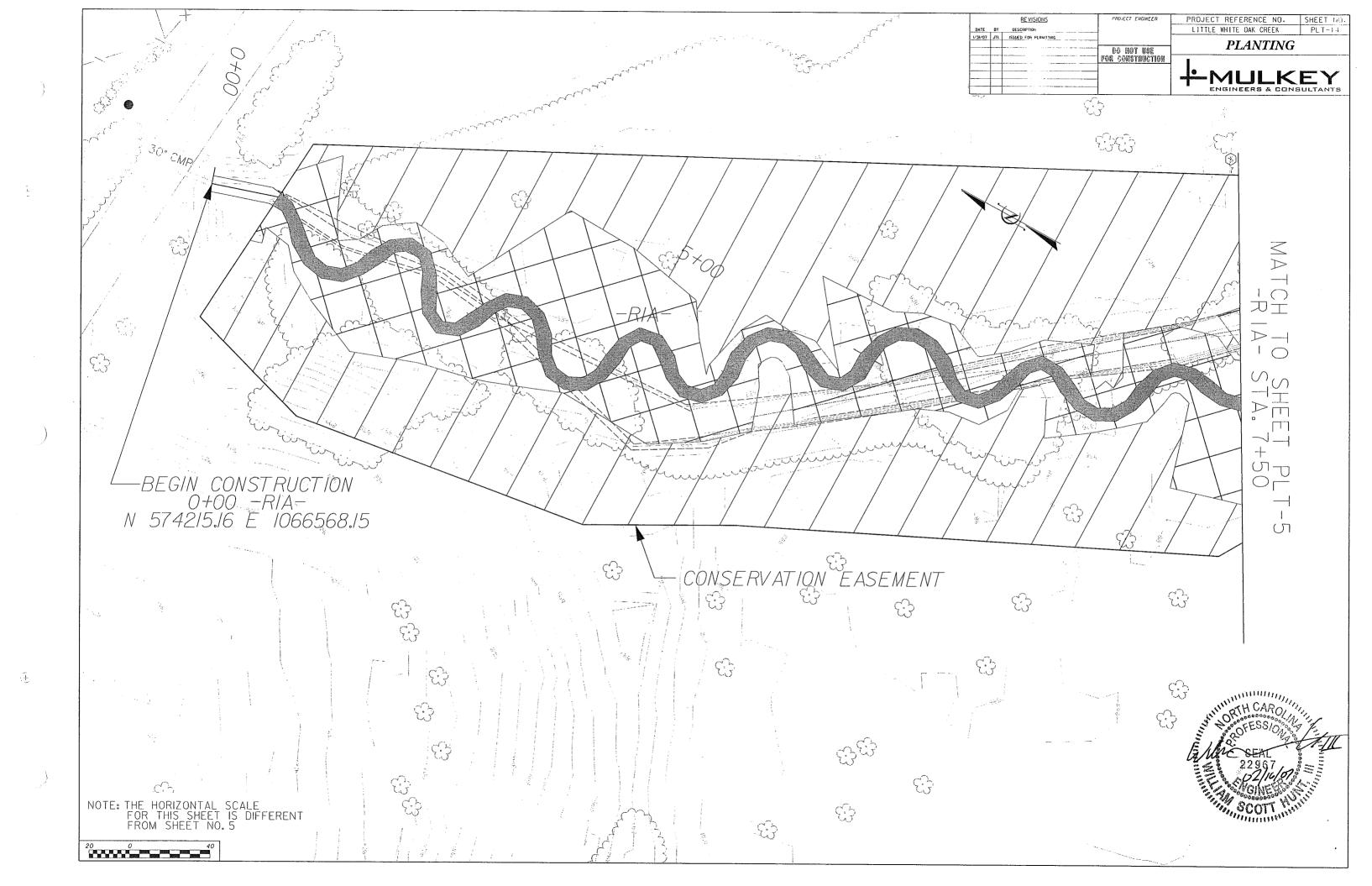


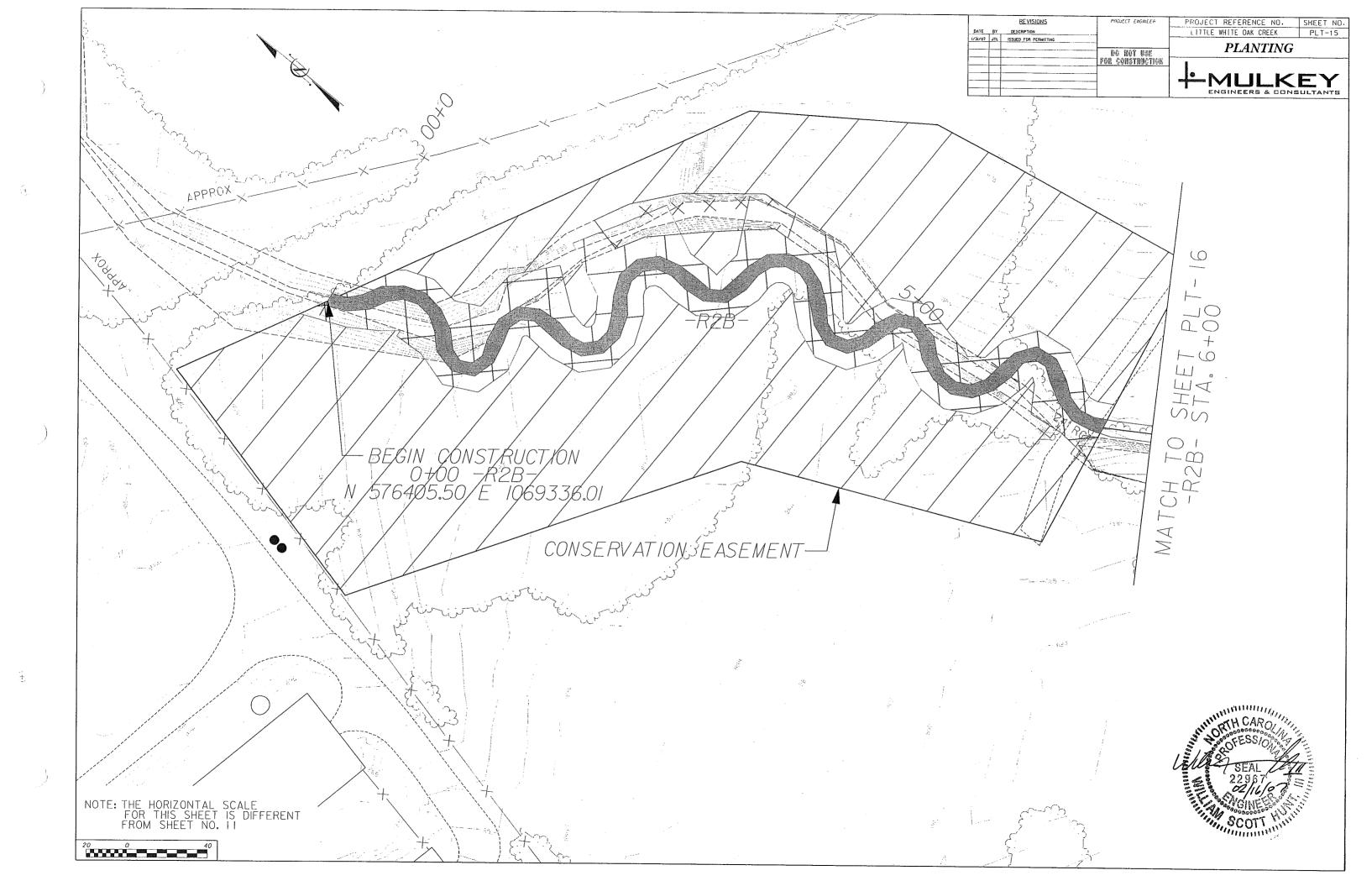



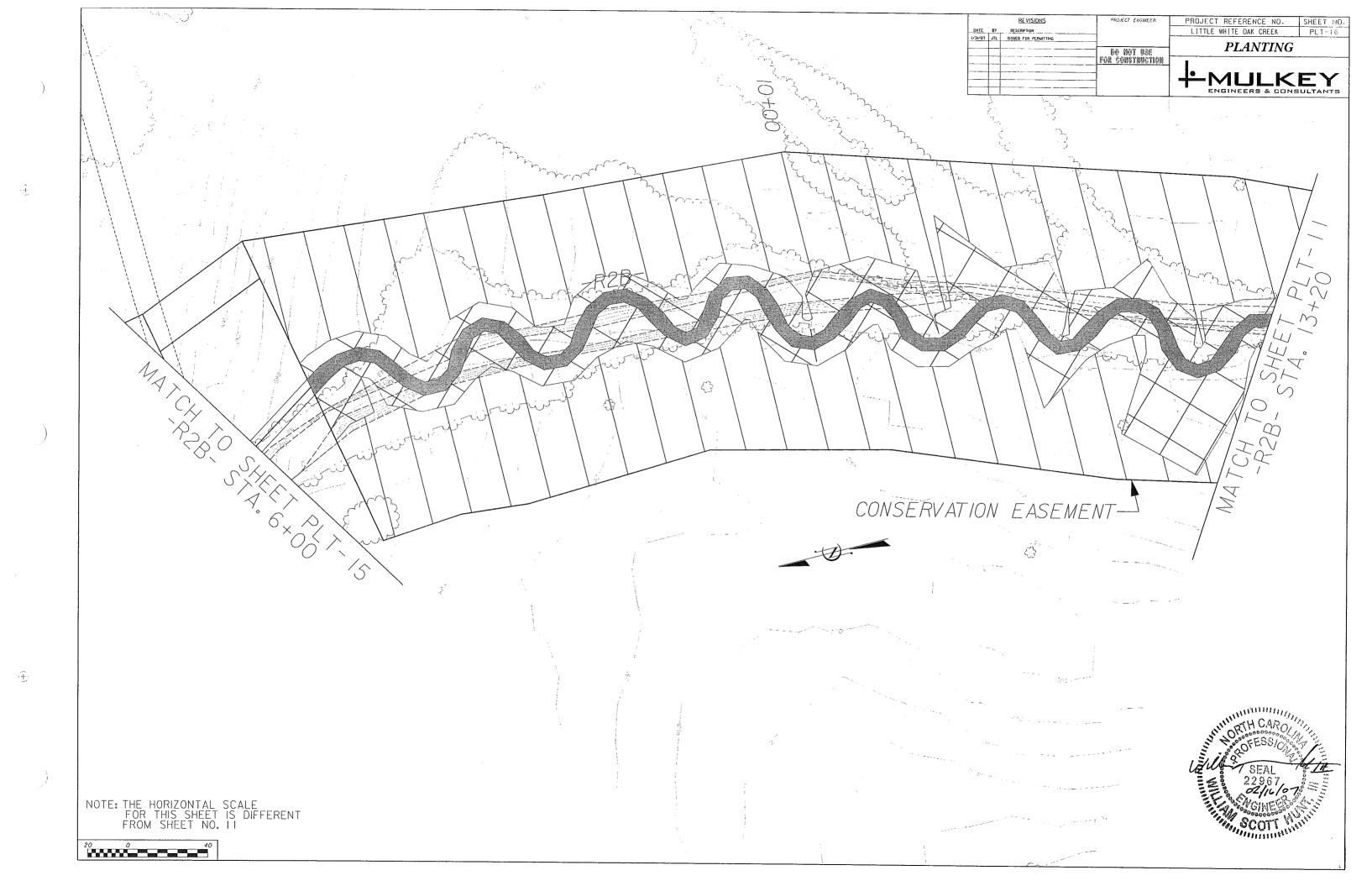



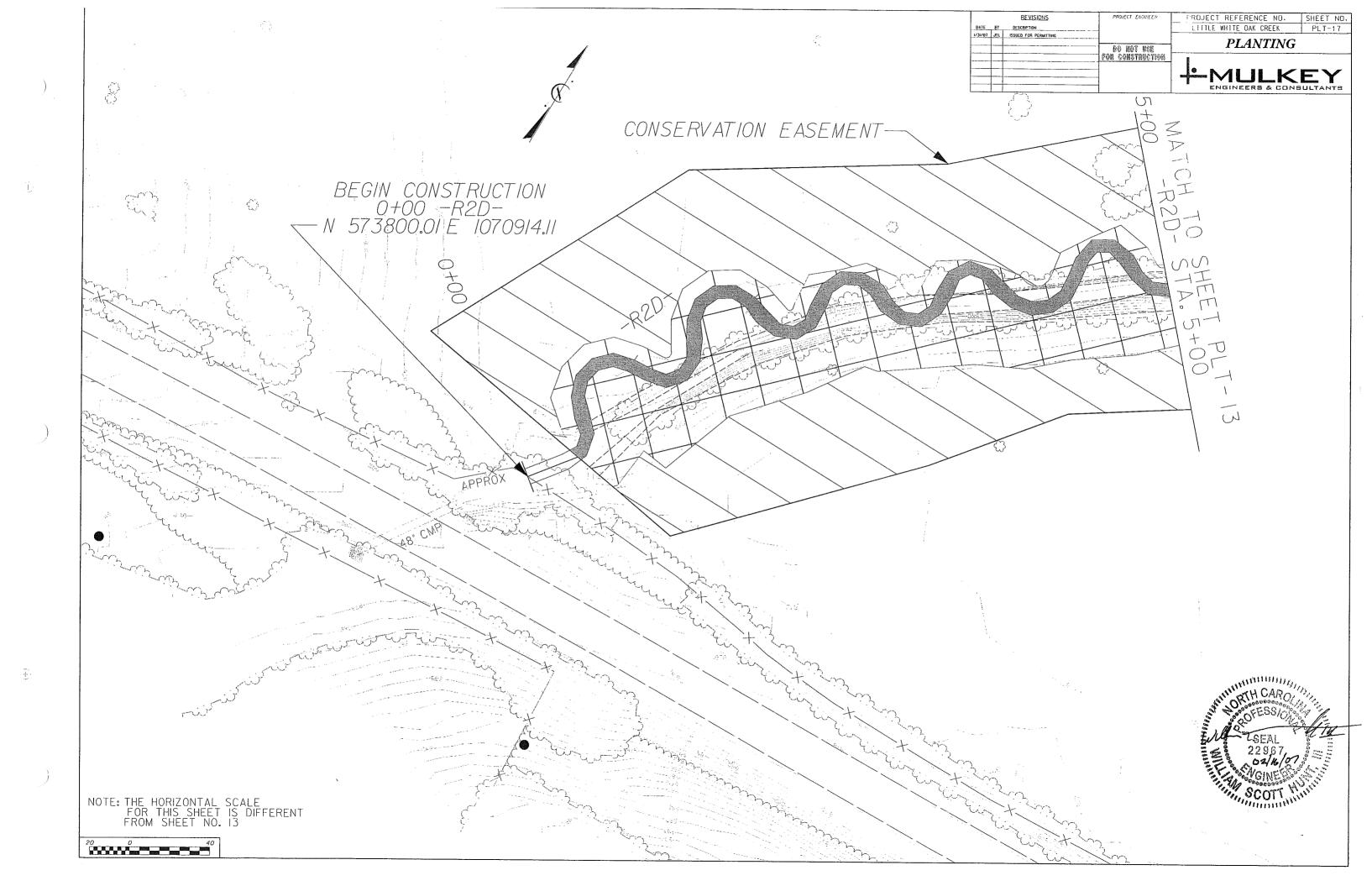














## **Reach R1 and Tributaries**



Cattle exiting Reach R1.



Photo facing downstream of Reach R1 at cross section 3.



Cattle crossing on R1A.



Photo representative of the condition of R1A and was taken upstream of the confluence with R1.



View of Reach R1A at a cross section location.

## **Reach R2 and Tributaries**



Southeast portion of Reach R2 facing up stream.



Northwest portion of Reach R2 facing southeast.



Reach R2 Upper facing down stream, downstream of the confluence with R2B.



Reach R2 Lower below the confluence of R2D.



Reach R2A upstream of the confluence with R2.



Southern portion of Reach R2B facing north up stream.



Northwest portion of R2B facing downstream.



R2D facing down stream.



R2D facing west perpendicular to the stream.

# WSE q C 01/07/07

RI

## North Carolina Division of Water Quality - Stream Identification Form; Version 3.1

| Date: 7/20/06                                                    | Project: Little White Oak | Latitude:                             |
|------------------------------------------------------------------|---------------------------|---------------------------------------|
| Evaluator: TMB                                                   | Site: RI                  | Longitude:                            |
| <b>Total Points:</b><br>Stream is at least intermittent $54, 57$ | County: POIK              | Other<br>e.g. Quad Name: Mill Springs |

| $2C_{1}$                                                                                                                      |        |       |          |        |
|-------------------------------------------------------------------------------------------------------------------------------|--------|-------|----------|--------|
| A. Geomorphology (Subtotal =)                                                                                                 | Absent | Weak  | Moderate | Strong |
| 1 <sup>a</sup> . Continuous bed and bank                                                                                      | 0      | 1     | 2        | 3)     |
| 2. Sinuosity                                                                                                                  | 0      | 1     | 2        | 3      |
| 3. In-Channel structure: riffle-pool sequence                                                                                 | 0      |       | 2        | 3      |
| 4. Soil texture or stream substrate sorting                                                                                   | 0      | 1     | (2)      | 3      |
| 5. Active/relic floodplain                                                                                                    | 0      | 1     | 2        | (3)    |
| 6. Depositional bars or benches                                                                                               | 0      | 1     | 2        | 3      |
| 7. Braided channel                                                                                                            | 0      | 1     | 2        | 3      |
| 8. Recent alluvial deposits                                                                                                   | 0      | 1     | 2        | 3      |
| 9 <sup>ª</sup> . Natural levees                                                                                               | 0      | 1     | 2        | 3      |
| 10. Headcuts                                                                                                                  | 0      | 1     | 2        | 3      |
| 11. Grade controls                                                                                                            | 0      | 0.5   | 1        | 4.5    |
| 12. Natural valley or drainageway                                                                                             | 0      | 0.5   | 1        | 1.5    |
| <ol> <li>Second or greater order channel on <u>existing</u><br/>USGS or NRCS map or other documented<br/>evidence.</li> </ol> | No     | 0 = 0 | Yes =    | = 3    |

<sup>a</sup> Man-made ditches are not rated; see discussions in manual.

1

| B Hydrology (Subtotal =)                                                                                                 | Absent | Weak | Moderate | Strong |
|--------------------------------------------------------------------------------------------------------------------------|--------|------|----------|--------|
| 14. Groundwater flow/discharge                                                                                           | 0      | 1    | 2        | 3      |
| <ol> <li>Water in channel and &gt; 48 hrs. since rain, <u>or</u><br/>Water in channel – dry or growing season</li> </ol> | 0      | 1    | 2        | 3      |
| 16. Leaflitter                                                                                                           | 1.5    | 1    | 0.5      | 0      |
| 17. Sediment on plants or debris                                                                                         | 0      | 0.5  | 1        | (1.5)  |
| 18. Organic debris lines or piles (Wrack lines)                                                                          | 0      | 0.5  | 1        | (1.5)  |
| 19. Hydric soils (redoximorphic features) present?                                                                       | No     | = 0  | Yes =    | 1.5    |

| 11.1 -                                          |                                       |      |          |        |  |
|-------------------------------------------------|---------------------------------------|------|----------|--------|--|
| C. Biology (Subtotal = $19.5$ )                 | Absent                                | Weak | Moderate | Strong |  |
| 20 <sup>b</sup> . Fibrous roots in channel      | (3)                                   | 2    | 1        | 0      |  |
| 21 <sup>b</sup> . Rooted plants in channel      | 3                                     | 2    | 1        | 0      |  |
| 22. Crayfish                                    | 0                                     | 0.5  | 1        | (1.5)  |  |
| 23. Bivalves                                    | 0                                     |      | 2        | 3      |  |
| 24. Fish                                        | 0                                     | 0.5  | 1        | (1.5)  |  |
| 25. Amphibians                                  | 0                                     | 0.5  | 1        | 1.5    |  |
| 26. Macrobenthos (note diversity and abundance) | 0                                     | 0.5  | (1)      | 1.5    |  |
| 27. Filamentous algae; periphyton               | 0                                     | Ð    | 2        | 3      |  |
| 28. Iron Oxidizing bacteria/fungus              | 0                                     | 0.5  | 1        | 1.5    |  |
| 29 <sup>b</sup> . Wetland plants in streambed   | FAC=0.5; FACW=0.75; OBL=1.5; SAV=2.0; |      |          |        |  |
|                                                 | Other=0                               |      |          |        |  |

<sup>b</sup>.Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland 22 plants.

Notes: (Use back side of this form for additional notes.)

Sketch:

RIA

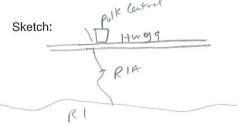
Gumpal

HWYS

RI

| Date: 7/20/06                                                                                          | Project: Little White Oak | Latitude:                             |
|--------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------|
| Evaluator: Tm B                                                                                        | Site: RIA                 | Longitude:                            |
| <b>Total Points:</b><br>Stream is at least intermittent $\frac{1}{15} \ge 19$ or perennial if $\ge 30$ | County: Polk              | Other<br>e.g. Quad Name: M:ll Springs |

| 2                                                                                                                             |        |                  |          |        |
|-------------------------------------------------------------------------------------------------------------------------------|--------|------------------|----------|--------|
| A. Geomorphology (Subtotal =)                                                                                                 | Absent | Weak             | Moderate | Strong |
| 1 <sup>ª</sup> . Continuous bed and bank                                                                                      | 0      | 1                | 2        | 3      |
| 2. Sinuosity                                                                                                                  | 0      | 1                | 2        | 3      |
| 3. In-Channel structure: riffle-pool sequence                                                                                 | 0      | 1                | 2        | 3      |
| 4. Soil texture or stream substrate sorting                                                                                   | 0      | Ð                | 2        | 3      |
| 5. Active/relic floodplain                                                                                                    | 0      | 1                | 2)       | 3      |
| 6. Depositional bars or benches                                                                                               | 0      | (D)              | 2        | 3      |
| 7. Braided channel                                                                                                            | 0      | 1                | 2        | 3      |
| 8. Recent alluvial deposits                                                                                                   | 0      | 1                | 2        | 3      |
| 9 <sup>ª</sup> . Natural levees                                                                                               | 0      | 1                | Ø        | 3      |
| 10. Headcuts                                                                                                                  | 0      | 1                | 2)       | 3      |
| 11. Grade controls                                                                                                            | 0      | 0.5              | 1        | (1.5)  |
| 12. Natural valley or drainageway                                                                                             | 0      | 0.5              | 1        | (1.5)  |
| <ol> <li>Second or greater order channel on <u>existing</u><br/>USGS or NRCS map or other documented<br/>evidence.</li> </ol> | No     | $\mathbf{p} = 0$ | Yes      | = 3    |


<sup>a</sup> Man-made ditches are not rated; see discussions in manual.

| B Hydrology (Subtotal =8)                          | Absent | Weak | Moderate | Strong |
|----------------------------------------------------|--------|------|----------|--------|
| 14. Groundwater flow/discharge                     | 0      | 1    | (2)      | 3      |
| 15. Water in channel and > 48 hrs. since rain, or  | 0      | 1    | 2        | 3      |
| Water in channel – dry or growing season           | Ŭ      |      |          | 0      |
| 16. Leaflitter                                     | 1.5    | Œ    | 0.5      | 0      |
| 17. Sediment on plants or debris                   | 0      | 0.5  | (1)      | 1.5    |
| 18. Organic debris lines or piles (Wrack lines)    | 0      | 0.5  | Ð        | 1.5    |
| 19. Hydric soils (redoximorphic features) present? | No     |      | Yes =    | 1.5    |
|                                                    |        |      |          |        |

| O Dislamy (Cubtotal                             | Absent     | Weak         | Moderate    | Strong  |
|-------------------------------------------------|------------|--------------|-------------|---------|
| C. Biology (Subtotal =)                         |            |              | incuorato   | 0       |
| 20 <sup>b</sup> . Fibrous roots in channel      | 3          | 2            | 1           | 0       |
| 21 <sup>b</sup> . Rooted plants in channel      | 3          | 2            | 1           | 0       |
| 22. Crayfish                                    | 0          | 0.5          | $\bigcirc$  | 1.5     |
| 23. Bivalves                                    | $\bigcirc$ | 1            | 2           | 3       |
| 24. Fish                                        | 0          | 0.5          | 1           | 1.5     |
| 25. Amphibians                                  | 0          | 0.5          | 1           | 9.5     |
| 26. Macrobenthos (note diversity and abundance) | 0          | 0.3          | 1           | 1.5     |
| 27. Filamentous algae; periphyton               | (0)        | τ <b>1</b> γ | 2           | 3       |
| 28. Iron Oxidizing bacteria/fungus              | 0          | 0.5          | 1           | 1.5     |
| 29 <sup>b</sup> . Wetland plants in streambed   | FAC=0.5;   | FACW=0.75;   | OBL=1.5; SA | 4V=2.0; |
|                                                 | 4          | Other        |             |         |

<sup>b</sup>.Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (Use back side of this form for additional notes.)



# W514 90 01/05/67,

## North Carolina Division of Water Quality – Stream Identification Form; Version 3.1

| Date: 7/20/06                                                                                     | Project: LWO | Latitude:                              |
|---------------------------------------------------------------------------------------------------|--------------|----------------------------------------|
| Evaluator: 7m B                                                                                   | Site: RZ     | Longitude:                             |
| <b>Total Points:</b><br>Stream is at least intermittent<br>If $\geq 19$ or perennial if $\geq 30$ | County: POIL | Other M;//<br>e.g. Quad Name: Spring s |

| A. Geomorphology (Subtotal =9 /)                                                                                              | Absent | Weak       | Moderate | Strong |
|-------------------------------------------------------------------------------------------------------------------------------|--------|------------|----------|--------|
| 1 <sup>ª</sup> . Continuous bed and bank                                                                                      | 0      | 1          | 2        | 3      |
| 2. Sinuosity                                                                                                                  | 0      | 1          | (2)      | 3      |
| 3. In-Channel structure: riffle-pool sequence                                                                                 | 0      | $\bigcirc$ | 2        | 3      |
| 4. Soil texture or stream substrate sorting                                                                                   | 0      | 1          | 2        | 3      |
| 5. Active/relic floodplain                                                                                                    | 0      | 1          | 2        | 3      |
| 6. Depositional bars or benches                                                                                               | 0      | 1          | 2        | 3      |
| 7. Braided channel                                                                                                            | O .    | 1          | 2        | 3      |
| 8. Recent alluvial deposits                                                                                                   | 0      | 1          | 2        | (3)    |
| 9 <sup>ª</sup> . Natural levees                                                                                               | 0      | 1          | 2        | 3      |
| 10. Headcuts                                                                                                                  | 0      | 1          | 2        | 3      |
| 11. Grade controls                                                                                                            | 0      | 0.5        | 1        | (1.5)  |
| 12. Natural valley or drainageway                                                                                             | 0      | 0.5        | 1        | (1.5)  |
| <ol> <li>Second or greater order channel on <u>existing</u><br/>USGS or NRCS map or other documented<br/>evidence.</li> </ol> | No     | 0 = 0      | Yes      | -3     |

<sup>a</sup> Man-made ditches are not rated; see discussions in manual.

| B Hydrology (Subtotal = $10.5^{\circ}$ )                                                                                      | Absent | Weak | Moderate | Strong     |
|-------------------------------------------------------------------------------------------------------------------------------|--------|------|----------|------------|
| 14. Groundwater flow/discharge                                                                                                | 0      | 1    | 2        | (3)        |
| <ol> <li>Water in channel and &gt; 48 hrs. since rain, <u>or</u></li> <li>Water in channel – dry or growing season</li> </ol> | 0      | 1    | 2        | 3)         |
| 16. Leaflitter                                                                                                                | 1.5    | 1    | 0.5      | $\bigcirc$ |
| 17. Sediment on plants or debris                                                                                              | 0      | 0.5  | 1        | (1.5)      |
| 18. Organic debris lines or piles (Wrack lines)                                                                               | 0      | 0.5  | 1        | (1.5)      |
| 19. Hydric soils (redoximorphic features) present?                                                                            | No     | = 0  | Yes =    | 1.5        |

| C. Biology (Subtotal = $19, 5$ )                | Absent   | Weak           | Moderate    | Strong  |
|-------------------------------------------------|----------|----------------|-------------|---------|
| 20 <sup>b</sup> . Fibrous roots in channel      | 3        | 2              | 1           | 0       |
| 21 <sup>b</sup> . Rooted plants in channel      | (3)      | 2              | 1           | 0       |
| 22. Crayfish                                    | 0        | 0.5            | 1           | (1.5)   |
| 23. Bivalves                                    | 0        | $(\mathbf{J})$ | 2           | 3       |
| 24. Fish                                        | 0        | 0.5            | 1           | (1.5)   |
| 25. Amphibians                                  | 0        | 0.5            | 1           | 1.5     |
| 26. Macrobenthos (note diversity and abundance) | 0        | 0.5            | $\bigcirc$  | 1.5     |
| 27. Filamentous algae; periphyton               | 0        | $\bigcirc$     | 2           | 3       |
| 28. Iron Oxidizing bacteria/fungus              | 0        | 0.5            | 1           | 1.5     |
| 29 <sup>b</sup> . Wetland plants in streambed   | FAC=0.5; | FACW=0.75;     | OBL=1.5; SA | AV=2.0; |
|                                                 | Other=0  |                |             |         |

<sup>b</sup>.Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (Use back side of this form for additional notes.)

Sketch: RLB RZC RZA R2 RZA RI

| Date: 7/20/06                                                                                         | Project: Little White Oak | Latitude:                              |
|-------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------|
| Evaluator: TMB                                                                                        | Site: RZA                 | Longitude:                             |
| <b>Total Points:</b><br>Stream is at least intermittent $\frac{1}{16} = 19$ or perennial if $\geq 30$ | County: Po1/L             | Other M.:II<br>e.g. Quad Name: Springs |

| A. Geomorphology (Subtotal =)                                                                                                 | Absent     | Weak | Moderate | Strong |
|-------------------------------------------------------------------------------------------------------------------------------|------------|------|----------|--------|
| 1 <sup>a</sup> . Continuous bed and bank                                                                                      | 0          | 1    | 2        | (3)    |
| 2. Sinuosity                                                                                                                  | 0          |      | 2        | 3      |
| 3. In-Channel structure: riffle-pool sequence                                                                                 | 0          | 1    | Q        | 3      |
| 4. Soil texture or stream substrate sorting                                                                                   | 0          | 1    | 2        | 3      |
| 5. Active/relic floodplain                                                                                                    | 0          | 1    | 2        | 3      |
| 6. Depositional bars or benches                                                                                               | 0          | 1    | (2)      | 3      |
| 7. Braided channel                                                                                                            | $\bigcirc$ | 1    | 2        | 3      |
| 8. Recent alluvial deposits                                                                                                   | 0          | 1    | 2        | 3      |
| 9 <sup>ª</sup> . Natural levees                                                                                               | 0          | 1    | (2)      | 3      |
| 10. Headcuts                                                                                                                  | 0          | 1    | 2        | 3)     |
| 11. Grade controls                                                                                                            | 0          | 0.5  | 1        | 1.5    |
| 12. Natural valley or drainageway                                                                                             | 0          | 0.5  | 1        | (1.5)  |
| <ol> <li>Second or greater order channel on <u>existing</u><br/>USGS or NRCS map or other documented<br/>evidence.</li> </ol> | No = 0     |      | Yes :    | = 3    |

<sup>a</sup> Man-made ditches are not rated; see discussions in manual.

| B Hydrology (Subtotal =/ᢕ ✓)                                                                                                  | Absent | Weak | Moderate                | Strong |
|-------------------------------------------------------------------------------------------------------------------------------|--------|------|-------------------------|--------|
| 14. Groundwater flow/discharge                                                                                                | 0      | 1    | 2                       | 3      |
| <ol> <li>Water in channel and &gt; 48 hrs. since rain, <u>or</u></li> <li>Water in channel – dry or growing season</li> </ol> | 0      | 1    | 2                       | 3      |
| 16. Leaflitter                                                                                                                | 1.5    | 1    | 0.5                     | 0      |
| 17. Sediment on plants or debris                                                                                              | 0      | 0.5  | (1)                     | 1.5    |
| 18. Organic debris lines or piles (Wrack lines)                                                                               | 0      | 0.5  | $\overline{\mathbb{O}}$ | 1.5    |
| 19. Hydric soils (redoximorphic features) present?                                                                            | No     | = 0  | Yes =                   | 1.5    |

| C. Biology (Subtotal = $3 - 3$                  | Absent   | Weak                                             | Moderate | Strong |  |
|-------------------------------------------------|----------|--------------------------------------------------|----------|--------|--|
| 20 <sup>b</sup> . Fibrous roots in channel      | (3)      | 2                                                | 1        | 0      |  |
| 21 <sup>b</sup> . Rooted plants in channel      | 3        | 2                                                | 11       | 0      |  |
| 22. Crayfish                                    | 0        | 0.5                                              | B        | 1.5    |  |
| 23. Bivalves                                    | 0        | 1                                                | 2        | 3      |  |
| 24. Fish                                        | 0        | 0.5                                              | 1        | (1.5)  |  |
| 25. Amphibians                                  | 0        | 0.5                                              | 1        | (1.5)  |  |
| 26. Macrobenthos (note diversity and abundance) | 0        | 0.5                                              | Ð        | 1.5    |  |
| 27. Filamentous algae; periphyton               | 0        | 1                                                | 2        | 3      |  |
| 28. Iron Oxidizing bacteria/fungus              | 0        | 0.5                                              | 1        | 1.5    |  |
| 29 <sup>b</sup> . Wetland plants in streambed   | FAC=0.5; | FAC=0.5; FACW=0.75; OBL=1.5; SAV=2.0;<br>Other=0 |          |        |  |

<sup>b</sup>.Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (Use back side of this form for additional notes.)

Sketch: RDB Ric R2A

RI

RZ

WSH QC DI/05/07

| Date: 7/20/06                                                                                              | Project: Lwo | Latitude:                             |
|------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------|
| Evaluator: 7MB                                                                                             | Site: RLB    | Longitude:                            |
| <b>Total Points:</b><br>Stream is at least intermittent $44, 57$<br>If $\geq 19$ or perennial if $\geq 30$ | County: Polk | Other Mill Springs<br>e.g. Quad Name: |

| A. Geomorphology (Subtotal = $23$ )                                                                                           | Absent | Weak  | Moderate | Strong |
|-------------------------------------------------------------------------------------------------------------------------------|--------|-------|----------|--------|
| 1 <sup>a</sup> . Continuous bed and bank                                                                                      | 0      | 1     | 2        | 3      |
| 2. Sinuosity                                                                                                                  | 0      | Ð     | 2        | 3      |
| 3. In-Channel structure: riffle-pool sequence                                                                                 | 0      | Ø     | 2        | 3      |
| 4. Soil texture or stream substrate sorting                                                                                   | 0      | 1     | (2)      | 3      |
| 5. Active/relic floodplain                                                                                                    | 0      | 1     | 2        | 3      |
| <ol><li>Depositional bars or benches</li></ol>                                                                                | 0      | 1     | 2        | 3      |
| 7. Braided channel                                                                                                            | B      | 1     | 2        | 3      |
| 8. Recent alluvial deposits                                                                                                   | 0      | 1     | 2        | 3      |
| 9 <sup>a</sup> . Natural levees                                                                                               | 0      | 1     | (2)      | 3      |
| 10. Headcuts                                                                                                                  | 0      | 1     | 2        | 3      |
| 11. Grade controls                                                                                                            | 0      | 0.5   | 1        | 1.5    |
| 12. Natural valley or drainageway                                                                                             | 0      | 0.5   | 1        | 1.5    |
| <ol> <li>Second or greater order channel on <u>existing</u><br/>USGS or NRCS map or other documented<br/>evidence.</li> </ol> |        | No =0 |          | = 3    |

<sup>a</sup> Man-made ditches are not rated; see discussions in manual.

| B Hydrology (Subtotal =                                                                                                       | Absent    | Weak | Moderate                         | Strong |     |
|-------------------------------------------------------------------------------------------------------------------------------|-----------|------|----------------------------------|--------|-----|
| 14. Groundwater flow/discharge                                                                                                | 0         | 1    | 2                                | R      |     |
| <ol> <li>Water in channel and &gt; 48 hrs. since rain, <u>or</u></li> <li>Water in channel – dry or growing season</li> </ol> | 0         | 1    | 2                                | 3      |     |
| 16. Leaflitter                                                                                                                | 1.5       | B    | 0.5                              | 0      |     |
| 17. Sediment on plants or debris                                                                                              | 0         | 0.5  | Ð                                | 1.5    |     |
| 18. Organic debris lines or piles (Wrack lines)                                                                               | 0         | 0.5  | Φ                                | 1.5    |     |
| 19. Hydric soils (redoximorphic features) present?                                                                            | $N_0 = 0$ |      | vatures) present? No=0 Yes = 1.5 |        | 1.5 |

| C. Biology (Subtotal = $12.5^{\circ}$ )         | Absent   | Weak                                  | Moderate | Strong |  |
|-------------------------------------------------|----------|---------------------------------------|----------|--------|--|
| 20 <sup>b</sup> . Fibrous roots in channel      | B        | 2                                     | 1        | 0      |  |
| 21 <sup>b</sup> . Rooted plants in channel      | ð        | 2                                     | 1        | 0      |  |
| 22. Crayfish                                    | 0        | 0.5                                   | (Ť)      | 1.5    |  |
| 23. Bivalves                                    | (B)      | 1                                     | 2        | 3      |  |
| 24. Fish                                        | ð        | 0.5                                   | 1        | 1.5    |  |
| 25. Amphibians                                  | 0        | 0.5                                   | 1        | (1.5)  |  |
| 26. Macrobenthos (note diversity and abundance) | 0        | 0.5                                   | 1        | 1.5    |  |
| 27. Filamentous algae; periphyton               | 0        | 1                                     | 2        | 3      |  |
| 28. Iron Oxidizing bacteria/fungus              | 0        | 0.5                                   | Ð        | 1.5    |  |
| 29 <sup>b</sup> . Wetland plants in streambed   | FAC=0.5; | FAC=0.5; FACW=0.75; OBL=1.5; SAV=2.0; |          |        |  |
|                                                 | Other=0  |                                       |          |        |  |

<sup>b</sup>.Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (Use back side of this form for additional notes.)

Sketch: R24 R2B Ric F2 F2 KI

| Date: 1/20/06                                                                                             | Project: LWO    | Latitude:                            |
|-----------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------|
| Evaluator: Tm B                                                                                           | Site: $R \ge D$ | Longitude:                           |
| <b>Total Points:</b><br>Stream is at least intermittent $35.25$<br>If $\geq 19$ or perennial if $\geq 30$ | County: Polk    | Other Mill spring<br>e.g. Quad Name: |

| 17                                                                                                                            |            | 1              |          |        |
|-------------------------------------------------------------------------------------------------------------------------------|------------|----------------|----------|--------|
| A. Geomorphology (Subtotal =/ / /)                                                                                            | Absent     | Weak           | Moderate | Strong |
| 1 <sup>a</sup> . Continuous bed and bank                                                                                      | 0          | 1              | 2        | (3)    |
| 2. Sinuosity                                                                                                                  | 0          | (1)            | 2        | 3      |
| 3. In-Channel structure: riffle-pool sequence                                                                                 | 0          | $(\mathbf{f})$ | 2        | 3      |
| 4. Soil texture or stream substrate sorting                                                                                   | 0          | 1              | (2)      | 3      |
| 5. Active/relic floodplain                                                                                                    | 0          | 1              | 2        | 3      |
| 6. Depositional bars or benches                                                                                               | 0          | (1)            | 2        | 3      |
| 7. Braided channel                                                                                                            | $\bigcirc$ | 1              | 2        | 3      |
| 8. Recent alluvial deposits                                                                                                   | 0          | $(\mathbf{D})$ | 2        | 3      |
| 9 <sup>a</sup> . Natural levees                                                                                               | 0          | 1              | (2)      | 3      |
| 10. Headcuts                                                                                                                  | 0          | 1              | (2)      | 3      |
| 11. Grade controls                                                                                                            | 0          | 0.5            |          | 1.5    |
| 12. Natural valley or drainageway                                                                                             | 0          | 0.5            |          | 1.5    |
| <ol> <li>Second or greater order channel on <u>existing</u><br/>USGS or NRCS map or other documented<br/>evidence.</li> </ol> | No = 0     |                | Yes :    | = 3    |

<sup>a</sup> Man-made ditches are not rated; see discussions in manual.

| 9                                                                                                                             |        |      |          |        |
|-------------------------------------------------------------------------------------------------------------------------------|--------|------|----------|--------|
| B Hydrology (Subtotal = $l$ )                                                                                                 | Absent | Weak | Moderate | Strong |
| 14. Groundwater flow/discharge                                                                                                | 0      | 1    | 2        | (3)    |
| <ol> <li>Water in channel and &gt; 48 hrs. since rain, <u>or</u></li> <li>Water in channel – dry or growing season</li> </ol> | 0      | 1    | 2        | 3      |
| 16. Leaflitter                                                                                                                | 1.5    | 1    | 0.5      | 0      |
| 17. Sediment on plants or debris                                                                                              | 0      | 0.5  | 1        | 1.5    |
| 18. Organic debris lines or piles (Wrack lines)                                                                               | 0      | 0.5  | 1        | 1.5    |
| 19. Hydric soils (redoximorphic features) present?                                                                            | No     | = 0  | Yes =    | 1.5    |

| C. Biology (Subtotal = $(2, 2)$ )               | Absent     | Weak                                  | Moderate | Strong |  |
|-------------------------------------------------|------------|---------------------------------------|----------|--------|--|
| 20 <sup>b</sup> . Fibrous roots in channel      | 3          | 2                                     | 1        | 0      |  |
| 21 <sup>b</sup> . Rooted plants in channel      | 3          | 2                                     |          | 0      |  |
| 22. Crayfish                                    | 0          | 0.5                                   | 1        | (1.5)  |  |
| 23. Bivalves                                    | $\bigcirc$ | 1                                     | 2        | 3      |  |
| 24. Fish                                        | 0          | 0.5                                   | 1        | 1.5    |  |
| 25. Amphibians                                  | 0          | 0.5                                   | 1        | 1.5    |  |
| 26. Macrobenthos (note diversity and abundance) | 0          | 0.5                                   | 1        | 1.5    |  |
| 27. Filamentous algae; periphyton               | 0          | $\bigcirc$                            | 2        | 3      |  |
| 28. Iron Oxidizing bacteria/fungus              | 0          | 0.5                                   | 1        | 1.5    |  |
| 29 <sup>b</sup> . Wetland plants in streambed   | FAC=0.5;   | FAC=0.5; FACW=0.75; OBL=1.5; SAV=2.0; |          |        |  |
|                                                 | Other=0    |                                       |          |        |  |

<sup>b</sup>.Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (Use back side of this form for additional notes.)

Sketch:  $p_{2}^{A}$  (p\_{2}^{B}) (p\_{2}^{C})  $p_{2}$  (p\_{2}^{C})  $p_{2}$  (p\_{2}^{C})  $p_{1}$  (p\_{2}^{C}) 12 p R2D

TIMBRE DILOSIO

# Reference Site Photographs UT to Ostin Creek



Beginning of the surveyed reach of the UT to Ostin Creek facing downstream.



UT to Ostin Creek facing downstream approximately 400 feet from the start of reference reach survey.



UT to Ostin Creek approximately 172 linear feet from the start of the reference reach survey.



Photo taken facing downstream at the end of the reference reach survey approximately 590 linear feet downstream of the start of the survey.

| Date: 9/28/06 | Project: UT to Ostin Creek | Latitude:                               |
|---------------|----------------------------|-----------------------------------------|
|               | Site: Reference Reach      | Longitude:                              |
| Total Points: | County: Polk               | <b>Other</b><br><i>e.g. Quad Name</i> : |

| 0 1                                                                                                                           |            |                      |          |        |
|-------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|----------|--------|
| A. Geomorphology (Subtotal =)                                                                                                 | Absent     | Weak                 | Moderate | Strong |
| 1 <sup>ª</sup> . Continuous bed and bank                                                                                      | 0          | 1                    | 2        | 3      |
| 2. Sinuosity                                                                                                                  | 0          | 1                    | 2        | 3      |
| 3. In-Channel structure: riffle-pool sequence                                                                                 | 0          | 1                    | 2        | 3      |
| 4. Soil texture or stream substrate sorting                                                                                   | 0          | 1                    | 2        | 3      |
| 5. Active/relic floodplain                                                                                                    | 0          | 1                    | 2        | 3      |
| 6. Depositional bars or benches                                                                                               | 0          | 1                    | 2        | (3)    |
| 7. Braided channel                                                                                                            | $\bigcirc$ | 1                    | 2        | 3      |
| 8. Recent alluvial deposits                                                                                                   | 0          | 1                    | 2        | 3      |
| 9 <sup>ª</sup> . Natural levees                                                                                               | 0          | 1                    | 2        | 3      |
| 10. Headcuts                                                                                                                  | 0          | $\widehat{1}$        | 2        | 3      |
| 11. Grade controls                                                                                                            | 0          | 0.5                  | 1        | (1.5)  |
| 12. Natural valley or drainageway                                                                                             | 0          | 0.5                  | 1        | (1.5)  |
| <ol> <li>Second or greater order channel on <u>existing</u><br/>USGS or NRCS map or other documented<br/>evidence.</li> </ol> | No         | $\mathbf{p} = 0^{D}$ | Yes      | = 3    |

<sup>a</sup> Man-made ditches are not rated; see discussions in manual.

. .

| B Hydrology (Subtotal = $1, 5$ )                                                                                              | Absent | Weak | Moderate | Strong |
|-------------------------------------------------------------------------------------------------------------------------------|--------|------|----------|--------|
| 14. Groundwater flow/discharge                                                                                                | 0      | 1    | 2        | (3)    |
| <ol> <li>Water in channel and &gt; 48 hrs. since rain, <u>or</u></li> <li>Water in channel – dry or growing season</li> </ol> | 0      | 1    | 2        | 3      |
| 16. Leaflitter                                                                                                                | 1.5    | (1)  | 0.5      | 0      |
| 17. Sediment on plants or debris                                                                                              | 0      | 0.5  | 1        | (1.5)  |
| 18. Organic debris lines or piles (Wrack lines)                                                                               | 0      | 0.5  | 1        | (1.5)  |
| 19. Hydric soils (redoximorphic features) present?                                                                            | No     | = 0  | Yes =    | 1.5    |

| C. Biology (Subtotal =/ <u>S</u> )              | Absent   | Weak       | Moderate    | Strong  |
|-------------------------------------------------|----------|------------|-------------|---------|
| 20 <sup>b</sup> . Fibrous roots in channel      | (3)      | 2          | 1           | 0       |
| 21 <sup>b</sup> . Rooted plants in channel      | 3        | 2          | 1           | 0       |
| 22. Crayfish                                    | 0        | 0.5        | 1           | 1.5     |
| 23. Bivalves                                    | 0        | $\bigcirc$ | 2           | 3       |
| 24. Fish                                        | 0        | 0.5        | 1           | J.5     |
| 25. Amphibians                                  | 0        | 0.5        | 1           | (1.5)   |
| 26. Macrobenthos (note diversity and abundance) | 0        | 0.5        | 1           | (1.5)   |
| 27. Filamentous algae; periphyton               | 0        | (1)        | 2           | 3       |
| 28. Iron Oxidizing bacteria/fungus              | 0        | 0.5        | 1           | 1.5     |
| 29 <sup>b</sup> . Wetland plants in streambed   | FAC=0.5; | FACW=0.75; | OBL=1.5; S/ | 4V=2.0; |
|                                                 |          | Other      | =0          |         |

<sup>b</sup>.Items 20 and 21 focus on the presence of upland plants, Item 29 focuses on the presence of aquatic or wetland plants.

Notes: (Use back side of this form for additional notes.)

Sketch: LUCL Geer Ra V7 to OStin Ret. Rendo Road h Ostin Greek

|                  |       |                      |           | Water S    | Surface Elevations | (ft)       |
|------------------|-------|----------------------|-----------|------------|--------------------|------------|
|                  |       |                      | Discharge | Existing   | Proposed           |            |
| River            | Reach | <b>River Station</b> | (cfs)     | Conditions | Conditions         | Difference |
| SB Little White  | R1-1  | 240                  | 1450      | 891.2      | 889.0              | -2.2       |
| SB Little White  | R1-1  | 230                  | 838       | 890.1      | 887.5              | -2.6       |
| SB Little White  | R1-1  | 220                  | 838       | 889.9      | 887.0              | -2.9       |
| SB Little White  | R1-1  | 210                  | 838       | 888.0      | 886.5              | -1.5       |
| SB Little White  | R1-1  | 200                  | 838       | 887.1      | 885.6              | -1.5       |
| SB Little White  | R1-1  | 190                  | 838       | 886.3      | 884.8              | -1.5       |
| SB Little White  | R1-1  | 170                  | 838       | 885.0      | 882.8              | -2.2       |
| SB Little White  | R1-1  | 160                  | 870       | 884.3      | 882.2              | -2.1       |
| SB Little White  | R1-1  | 150                  | 870       | 883.4      | 880.6              | -2.7       |
| SB Little White  | R1-1  | 140                  | 870       | 881.8      | 879.8              | -2.0       |
| SB Little White  | R1-1  | 130                  | 870       | 881.5      | 879.3              | -2.2       |
| SB Little White  | R1-1  | 120                  | 870       | 881.7      | 878.9              | -2.7       |
| SB Little White  | R1-1  | 110                  | 884       | 881.5      | 878.6              | -3.0       |
| SB Little White  | R1-1  | 100                  | 884       | 881.5      | 878.5              | -3.0       |
| SB Little White  | R1-1  | 90                   | Bridge    |            |                    |            |
| SB Little White  | R1-1  | 80                   | 884       | 880.5      | 878.1              | -2.4       |
| SB Little White  | R1-1  | 70                   | 884       | 879.9      | 878.0              | -1.9       |
| SB Little White  | R1-1  | 60                   | 884       | 879.5      | 877.6              | -1.9       |
| SB Little White  | R1-1  | 50                   | 884       | 877.9      | 875.3              | -2.5       |
| SB Little White  | R1-1  | 40                   | 884       | 877.6      | 875.6              | -1.9       |
| SB Little White  | R1-1  | 30                   | 884       | 877.0      | 875.4              | -1.6       |
| SB Little White  | R1-1  | 20                   | 884       | 876.5      | 874.5              | -2.0       |
| SB Little White  | R1-1  | 10                   | 884       | 873.7      | 873.9              | 0.1        |
| Little White Oak | R2-1  | 260                  | 1000      | 882.5      | 879.7              | -2.8       |
| Little White Oak | R2-1  | 250                  | 1000      | 881.9      | 879.5              | -2.4       |
| Little White Oak | R2-1  | 240                  | 1000      | 881.7      | 879.2              | -2.5       |
| Little White Oak | R2-1  | 230                  | 1000      | 881.1      | 878.6              | -2.5       |
| Little White Oak | R2-1  | 220                  | 1000      | 881.1      | 878.4              | -2.7       |
| Little White Oak | R2-1  | 210                  | 1000      | 879.5      | 877.7              | -1.8       |
| Little White Oak | R2-1  | 200                  | 1080      | 879.3      | 877.1              | -2.2       |
| Little White Oak | R2-1  | 190                  | 1080      | 878.1      | 876.6              | -1.5       |
| Little White Oak | R2-1  | 180                  | 1080      | 876.5      | 875.7              | -0.8       |
| Little White Oak | R2-1  | 170                  | 1080      | 876.3      | 874.8              | -1.5       |
| Little White Oak | R2-1  | 160                  | 1080      | 873.9      | 874.2              | 0.3        |
| Little White Oak | R2-1  | 150                  | 1100      | 874.6      | 873.8              | -0.9       |
| Little White Oak | R2-1  | 140                  | 1100      | 874.6      | 873.6              | -1.0       |
| Little White Oak | R2-1  | 130                  | 1100      | 874.6      | 873.5              | -1.1       |
| Little White Oak | R2-1  | 120                  | 1600      | 874.4      | 872.8              | -1.6       |
| Little White Oak | R2-5  | 110                  | 1600      | 874.3      | 872.5              | -1.8       |
| Little White Oak | R2-5  | 100                  | 1600      | 874.1      | 872.2              | -1.9       |
| Little White Oak | R2-5  | 90                   | 1600      | 873.6      | 871.8              | -1.9       |
| Little White Oak | R2-5  | 80                   | 1600      | 873.6      | 871.6              | -1.9       |
| Little White Oak | R2-5  | 70                   | Bridge    | 0,0,0      | 0,110              |            |
| Little White Oak | R2-5  | 60                   | 1600      | 873.2      | 871.0              | -2.2       |
| Little White Oak | R2-5  | 50                   | 1600      | 870.8      | 870.7              | 0.0        |
| Little White Oak | R2-5  | 40                   | 1620      | 870.7      | 870.5              | -0.2       |
| Little White Oak | R2-5  | 30                   | 1620      | 870.5      | 870.4              | -0.2       |
| Little White Oak | R2-5  | 10                   | 1620      | 870.2      | 870.2              | 0.0        |

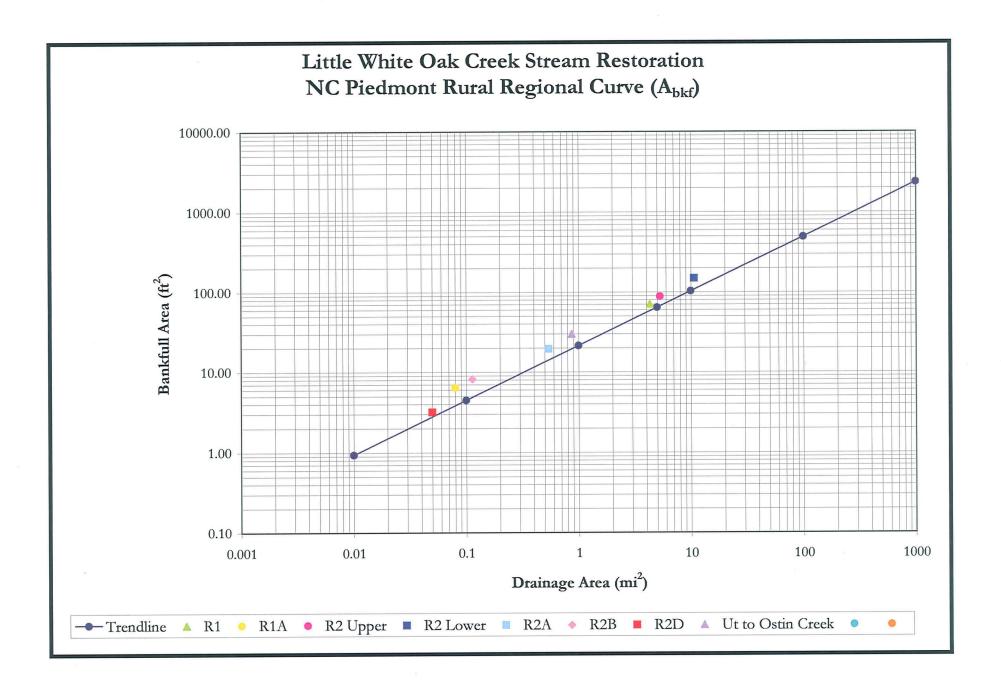
Flood Analysis for the 10 Year Event

(

|                  |       |                      |           | Water S    | Surface Elevations | (ft)       |
|------------------|-------|----------------------|-----------|------------|--------------------|------------|
|                  |       |                      | Discharge | Existing   | Proposed           |            |
| River            | Reach | <b>River Station</b> | (cfs)     | Conditions | Conditions         | Difference |
| SB Little White  | R1-1  | 240                  | 1450      | 892.9      | 890.4              | -2.5       |
| SB Little White  | R1-1  | 230                  | 1450      | 891.7      | 889.1              | -2.6       |
| SB Little White  | R1-1  | 220                  | 1450      | 891.6      | 888.6              | -2.9       |
| SB Little White  | R1-1  | 210                  | 1450      | 889.3      | 888.2              | -1.2       |
| SB Little White  | R1-1  | 200                  | 1450      | 888.5      | 887.2              | -1.3       |
| SB Little White  | R1-1  | 190                  | 1450      | 887.0      | 886.4              | -0.6       |
| SB Little White  | R1-1  | 170                  | 1450      | 886.8      | 884.4              | -2.4       |
| SB Little White  | R1-1  | 160                  | 1510      | 885.7      | 883.9              | -1.8       |
| SB Little White  | R1-1  | 150                  | 1510      | 885.0      | 882.4              | -2.6       |
| SB Little White  | R1-1  | 140                  | 1510      | 881.9      | 881.5              | -0.4       |
| SB Little White  | R1-1  | 130                  | 1510      | 882.6      | 880.9              | -1.7       |
| SB Little White  | R1-1  | 120                  | 1510      | 882.6      | 880.6              | -2.0       |
| SB Little White  | R1-1  | 110                  | 1530      | 882.4      | 880.2              | -2.3       |
| SB Little White  | R1-1  | 100                  | 1530      | 882.4      | 880.1              | -2.3       |
| SB Little White  | R1-1  | 90                   | Bridge    |            |                    |            |
| SB Little White  | R1-1  | 80                   | 1530      | 881.6      | 879.6              | -2.0       |
| SB Little White  | R1-1  | 70                   | 1530      | 881.1      | 879.5              | -1.6       |
| SB Little White  | R1-1  | 60                   | 1530      | 880.9      | 878.9              | -2.0       |
| SB Little White  | R1-1  | 50                   | 1530      | 879.1      | 876.8              | -2.3       |
| SB Little White  | R1-1  | 40                   | 1530      | 879.4      | 877.0              | -2.4       |
| SB Little White  | R1-1  | 30                   | 1530      | 879.1      | 876.8              | -2.3       |
| SB Little White  | R1-1  | 20                   | 1530      | 875.4      | 875.5              | 0.1        |
| SB Little White  | R1-1  | 10                   | 1530      | 875.9      | 875.2              | -0.7       |
| Little White Oak | R2-1  | 260                  | 1730      | 883.8      | 881.4              | -2.4       |
| Little White Oak | R2-1  | 250                  | 1730      | 882.4      | 881.3              | -1.1       |
| Little White Oak | R2-1  | 240                  | 1730      | 882.5      | 880.9              | -1.6       |
| Little White Oak | R2-1  | 230                  | 1730      | 881.9      | 880.4              | -1.5       |
| Little White Oak | R2-1  | 220                  | 1730      | 881.5      | 880.1              | -1.4       |
| Little White Oak | R2-1  | 210                  | 1730      | 880.3      | 879.2              | -1.1       |
| Little White Oak | R2-1  | 200                  | 1850      | 879.5      | 878.5              | -1.0       |
| Little White Oak | R2-1  | 190                  | 1850      | 878.4      | 877.9              | -0.5       |
| Little White Oak | R2-1  | 180                  | 1850      | 877.2      | 876.7              | -0.5       |
| Little White Oak | R2-1  | 170                  | 1850      | 876.0      | 875.6              | -0.4       |
| Little White Oak | R2-1  | 160                  | 1850      | 876.0      | 875.1              | -0.9       |
| Little White Oak | R2-1  | 150                  | 1890      | 876.0      | 875.0              | -1.0       |
| Little White Oak | R2-1  | 140                  | 1890      | 876.0      | 875.0              | -1.0       |
| Little White Oak | R2-1  | 130                  | 1890      | 876.0      | 874.9              | -1.0       |
| Little White Oak | R2-1  | 120                  | 2710      | 875.8      | 874.5              | -1.3       |
| Little White Oak | R2-5  | 110                  | 2710      | 875.7      | 874.3              | -1.4       |
| Little White Oak | R2-5  | 100                  | 2710      | 875.5      | 873.9              | -1.6       |
| Little White Oak | R2-5  | 90                   | 2710      | 874.9      | 873.1              | -1.7       |
| Little White Oak | R2-5  | 80                   | 2710      | 874.8      | 872.9              | -1.8       |
| Little White Oak | R2-5  | 70                   | Bridge    |            |                    |            |
| Little White Oak | R2-5  | 60                   | 2710      | 873.1      | 872.0              | -1.1       |
| Little White Oak | R2-5  | 50                   | 2710      | 872.3      | 871.6              | -0.8       |
| Little White Oak | R2-5  | 40                   | 2740      | 871.5      | 871.4              | -0.1       |
| Little White Oak | R2-5  | 30                   | 2740      | 871.3      | 871.3              | 0.0        |
| Little White Oak | R2-5  | 10                   | 2740      | 871.0      | 871.0              | 0.0        |

Flood Analysis for the 50 Year Event

|                  |              |                      |           | Water S    | Surface Elevations | (ft)       |
|------------------|--------------|----------------------|-----------|------------|--------------------|------------|
|                  |              |                      | Discharge | Existing   | Proposed           | 6          |
| River            | Reach        | <b>River Station</b> | (cfs)     | Conditions | Conditions         | Difference |
| SB Little White  | R1-1         | 240                  | 1770      | 893.5      | 891.0              | -2.5       |
| SB Little White  | R1-1         | 230                  | 1770      | 892.4      | 889.8              | -2.6       |
| SB Little White  | R1-1         | 220                  | 1770      | 892.3      | 889.3              | -3.0       |
| SB Little White  | R1-1         | 210                  | 1770      | 889.7      | 888.9              | -0.8       |
| SB Little White  | R1-1         | 200                  | 1770      | 889.1      | 888.0              | -1.1       |
| SB Little White  | R1-1         | 190                  | 1770      | 887.2      | 887.1              | 0.0        |
| SB Little White  | R1-1         | 170                  | 1770      | 886.6      | 885.1              | -1.5       |
| SB Little White  | R1-1         | 160                  | 1840      | 886.2      | 884.6              | -1.6       |
| SB Little White  | R1-1         | 150                  | 1840      | 884.5      | 883.0              | -1.5       |
| SB Little White  | R1-1         | 140                  | 1840      | 883.1      | 882.0              | -1.1       |
| SB Little White  | R1-1         | 130                  | 1840      | 882.9      | 881.6              | -1.3       |
| SB Little White  | R1-1         | 120                  | 1840      | 882.8      | 881.3              | -1.6       |
| SB Little White  | R1-1         | 110                  | 1870      | 882.7      | 881.0              | -1.7       |
| SB Little White  | R1-1         | 100                  | 1870      | 882.6      | 880.9              | -1.7       |
| SB Little White  | R1-1         | 90                   | Bridge    |            |                    |            |
| SB Little White  | R1-1         | 80                   | 1870      | 881.9      | 880.3              | -1.6       |
| SB Little White  | R1-1         | 70                   | 1870      | 881.2      | 880.2              | -1.1       |
| SB Little White  | R1-1         | 60                   | 1870      | 881.0      | 879.6              | -1.4       |
| SB Little White  | R1-1         | 50                   | 1870      | 879.8      | 877.5              | -2.3       |
| SB Little White  | R1-1         | 40                   | 1870      | 879.7      | 877.8              | -2.0       |
| SB Little White  | R1-1         | 30                   | 1870      | 878.9      | 877.4              | -1.5       |
| SB Little White  | R1-1         | 20                   | 1870      | 876.7      | 875.8              | -0.9       |
| SB Little White  | R1-1         | 10                   | 1870      | 876.4      | 875.8              | -0.6       |
| Little White Oak | R2-1         | 260                  | 2110      | 884.5      | 882.1              | -2.4       |
| Little White Oak | R2-1         | 250                  | 2110      | 882.5      | 882.0              | -0.4       |
| Little White Oak | R2-1         | 240                  | 2110      | 882.9      | 881.7              | -1.2       |
| Little White Oak | R2-1         | 230                  | 2110      | 882.2      | 881.0              | -1.2       |
| Little White Oak | R2-1         | 220                  | 2110      | 881.7      | 880.7              | -1.0       |
| Little White Oak | R2-1         | 210                  | 2110      | 880.5      | 879.6              | -0.9       |
| Little White Oak | R2-1         | 200                  | 2250      | 879.7      | 878.9              | -0.8       |
| Little White Oak | R2-1         | 190                  | 2250      | 878.7      | 878.2              | -0.5       |
| Little White Oak | R2-1         | 180                  | 2250      | 877.4      | 877.1              | -0.3       |
| Little White Oak | R2-1         | 170                  | 2250      | 876.5      | 875.9              | -0.6       |
| Little White Oak | R2-1         | 160                  | 2250      | 876.5      | 875.7              | -0.8       |
| Little White Oak | R2-1         | 150                  | 2300      | 876.5      | 875.6              | -0.9       |
| Little White Oak | R2-1         | 140                  | 2300      | 876.4      | 875.6              | -0.9       |
| Little White Oak | R2-1         | 130                  | 2300      | 876.4      | 875.5              | -0.9       |
| Little White Oak | R2-1         | 120                  | 3280      | 876.3      | 875.2              | -0.9       |
| Little White Oak | R2-1<br>R2-5 | 110                  | 3280      | 876.2      | 875.0              | -1.2       |
| Little White Oak | R2-5         | 100                  | 3280      | 876.0      | 874.5              | -1.4       |
| Little White Oak | R2-5         | 90                   | 3280      | 875.1      | 873.6              | -1.5       |
| Little White Oak | R2-5         | 80                   | 3280      | 875.0      | 873.4              | -1.6       |
| Little White Oak | R2-5         | 70                   | Bridge    | 075.0      | 075.7              | 1.0        |
| Little White Oak | R2-5         | 60                   | 3280      | 873.4      | 872.4              | -1.0       |
| Little White Oak | R2-5         | 50                   | 3280      | 872.5      | 872.4              | -0.6       |
| Little White Oak | R2-5         | 40                   | 3310      | 872.5      | 871.8              | -0.1       |
| Little White Oak | R2-5         | 30                   | 3310      | 871.6      | 871.6              | 0.0        |
|                  |              |                      |           |            |                    |            |
| Little White Oak | R2-5         | 10                   | 3310      | 871.4      | 871.4              | 0.0        |


Flood Analysis for the 100 Year Event

|                  |       |                      |           | Water S    | Surface Elevations | (ft)       |
|------------------|-------|----------------------|-----------|------------|--------------------|------------|
|                  |       |                      | Discharge | Existing   | Proposed           |            |
| River            | Reach | <b>River Station</b> | (cfs)     | Conditions | Conditions         | Difference |
| SB Little White  | R1-1  | 240                  | 1450      | 894.6      | 893.2              | -1.5       |
| SB Little White  | R1-1  | 230                  | 2690      | 893.3      | 891.3              | -2.0       |
| SB Little White  | R1-1  | 220                  | 2690      | 893.3      | 890.8              | -2.5       |
| SB Little White  | R1-1  | 210                  | 2690      | 891.5      | 890.3              | -1.2       |
| SB Little White  | R1-1  | 200                  | 2690      | 890.4      | 889.0              | -1.4       |
| SB Little White  | R1-1  | 190                  | 2690      | 887.3      | 888.4              | 1.1        |
| SB Little White  | R1-1  | 170                  | 2690      | 887.0      | 886.3              | -0.7       |
| SB Little White  | R1-1  | 160                  | 2780      | 886.8      | 886.0              | -0.7       |
| SB Little White  | R1-1  | 150                  | 2780      | 885.1      | 884.1              | -0.9       |
| SB Little White  | R1-1  | 140                  | 2780      | 883.5      | 883.5              | 0.0        |
| SB Little White  | R1-1  | 130                  | 2780      | 883.5      | 883.4              | -0.1       |
| SB Little White  | R1-1  | 120                  | 2780      | 883.5      | 883.4              | -0.1       |
| SB Little White  | R1-1  | 110                  | 2820      | 883.2      | 883.2              | 0.0        |
| SB Little White  | R1-1  | 100                  | 2820      | 883.1      | 883.1              | 0.0        |
| SB Little White  | R1-1  | 90                   | Bridge    |            |                    |            |
| SB Little White  | R1-1  | 80                   | 2820      | 882.7      | 881.5              | -1.1       |
| SB Little White  | R1-1  | 70                   | 2820      | 882.2      | 881.4              | -0.7       |
| SB Little White  | R1-1  | 60                   | 2820      | 881.9      | 881.1              | -0.8       |
| SB Little White  | R1-1  | 50                   | 2820      | 880.5      | 878.2              | -2.4       |
| SB Little White  | R1-1  | 40                   | 2820      | 880.5      | 878.7              | -1.8       |
| SB Little White  | R1-1  | 30                   | 2820      | 879.6      | 877.8              | -1.9       |
| SB Little White  | R1-1  | 20                   | 2820      | 878.1      | 878.2              | 0.1        |
| SB Little White  | R1-1  | 10                   | 2820      | 878.0      | 878.1              | 0.1        |
| Little White Oak | R2-1  | 260                  | 3170      | 885.0      | 883.1              | -1.9       |
| Little White Oak | R2-1  | 250                  | 3170      | 883.7      | 883.1              | -0.6       |
| Little White Oak | R2-1  | 240                  | 3170      | 883.8      | 882.9              | -0.9       |
| Little White Oak | R2-1  | 230                  | 3170      | 883.2      | 882.0              | -1.2       |
| Little White Oak | R2-1  | 220                  | 3170      | 882.2      | 881.6              | -0.6       |
| Little White Oak | R2-1  | 210                  | 3170      | 881.1      | 880.4              | -0.7       |
| Little White Oak | R2-1  | 200                  | 3390      | 880.1      | 879.6              | -0.5       |
| Little White Oak | R2-1  | 190                  | 3390      | 879.2      | 879.0              | -0.1       |
| Little White Oak | R2-1  | 180                  | 3390      | 878.4      | 878.4              | 0.0        |
| Little White Oak | R2-1  | 170                  | 3390      | 878.1      | 878.1              | 0.0        |
| Little White Oak | R2-1  | 160                  | 3390      | 878.0      | 878.1              | 0.0        |
| Little White Oak | R2-1  | 150                  | 3460      | 878.0      | 878.1              | 0.0        |
| Little White Oak | R2-1  | 140                  | 3460      | 878.0      | 878.1              | 0.0        |
| Little White Oak | R2-1  | 130                  | 3460      | 878.0      | 878.0              | 0.0        |
| Little White Oak | R2-1  | 120                  | 4870      | 877.9      | 877.9              | 0.0        |
| Little White Oak | R2-5  | 110                  | 4870      | 877.8      | 877.8              | 0.0        |
| Little White Oak | R2-5  | 100                  | 4870      | 877.6      | 877.5              | -0.1       |
| Little White Oak | R2-5  | 90                   | 4870      | 876.8      | 876.9              | 0.2        |
| Little White Oak | R2-5  | 80                   | 4870      | 876.6      | 876.6              | 0.0        |
| Little White Oak | R2-5  | 70                   | Bridge    |            |                    |            |
| Little White Oak | R2-5  | 60                   | 4870      | 874.0      | 873.1              | -0.9       |
| Little White Oak | R2-5  | 50                   | 4870      | 873.0      | 872.8              | -0.2       |
| Little White Oak | R2-5  | 40                   | 4910      | 872.8      | 872.7              | -0.1       |
| Little White Oak | R2-5  | 30                   | 4910      | 872.5      | 872.5              | 0.0        |
| Little White Oak | R2-5  | 10                   | 4910      | 872.2      | 872.2              | 0.0        |

Flood Analysis for the 500 Year Event

()

|     | Data Entry fo     | r New Reach                      |                              |
|-----|-------------------|----------------------------------|------------------------------|
| No. | Reach Name        | Drainage Area (mi <sup>2</sup> ) | $A_{bkf}$ (ft <sup>2</sup> ) |
| 1   | R1                | 4.3                              | 70.4                         |
| 2   | R1A               | 0.08                             | 6.4                          |
| 3   | R2 Upper          | 5.33                             | 88                           |
| 4   | R2 Lower          | 10.656                           | 148.5                        |
| 5   | R2A               | 0.54                             | 19.5                         |
| 6   | R2B               | 0.114                            | 8.2                          |
| 7   | R2D               | 0.05                             | 3.2                          |
| 8   | Ut to Ostin Creek | 0.87                             | 30                           |
| 9   |                   |                                  |                              |
| 10  |                   |                                  |                              |





 $\frown$ 

| Stream:                                            | : 2006237.00<br>: Little White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oak Creek                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                      | Polk County<br>R1 XS #2 (Existin                                                                                 | g)                                                                                                             |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Date:                                              | : 12/1/2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                            | Observers:                                                                                                                                                                                                                                                                                                                                                           | EMP TMB                                                                                                          |                                                                                                                |
| Value                                              | Variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                            | Definition                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  |                                                                                                                |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            | ation for Entrainmen                                                                                                                                                                                                                                                                                                                                                 | t Analysis                                                                                                       |                                                                                                                |
| 7.87                                               | D <sub>50</sub> (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D <sub>50</sub> from Riffle o                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | <sup>#</sup> Choose                                                                                            |
| 2.9                                                | D <sub>50</sub> (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D <sub>50</sub> from Bar Sar                                                                                                                                                                                                                                                                                               | nple or Subpavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                                                                                                                |
| 27                                                 | D <sub>i</sub> (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Largest Particle f                                                                                                                                                                                                                                                                                                         | rom Bar Sample or Pav                                                                                                                                                                                                                                                                                                                                                | vement <sup>#</sup>                                                                                              |                                                                                                                |
| 0.089                                              | D <sub>i</sub> (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Di (mm) / 304.8                                                                                                                                                                                                                                                                                                            | (mm/ft)                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |                                                                                                                |
| 0.00284                                            | S (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bankfull Water S                                                                                                                                                                                                                                                                                                           | urface Slope                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  |                                                                                                                |
| 3.43                                               | d (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bankfull Mean D                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |                                                                                                                |
| 69.72                                              | A $(ft^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bankfull Cross S                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |                                                                                                                |
| 25.36                                              | $W_{p}$ (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wetted Perimete                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |                                                                                                                |
| 1.65                                               | γs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Submerged Spec                                                                                                                                                                                                                                                                                                             | ific Weight of Sedimen                                                                                                                                                                                                                                                                                                                                               | t (1.65)                                                                                                         |                                                                                                                |
| 62.4                                               | $\gamma$ (lbs/ft <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Density of Water                                                                                                                                                                                                                                                                                                           | : (62.4)                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                                                                |
|                                                    | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Calculation of Crit                                                                                                                                                                                                                                                                                                        | ical Dimensionless S                                                                                                                                                                                                                                                                                                                                                 | hear Stress                                                                                                      |                                                                                                                |
| 2.71                                               | $D_{50}/\hat{D_{50}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Range 3-7                                                                                                                                                                                                                                                                                                                  | Use Equation 1:                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |                                                                                                                |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            | $\tau_{ci}^* = 0.0834 (D_{50}/D_{50})$                                                                                                                                                                                                                                                                                                                               | )-0.872                                                                                                          |                                                                                                                |
| 3.43                                               | $D_i/D_{50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                            | Use Equation 2:                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |                                                                                                                |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                          | $\tau^*_{ci} = 0.0384(D_i/D_{50})$                                                                                                                                                                                                                                                                                                                                   | -0.887                                                                                                           |                                                                                                                |
| 0.035                                              | τ <sup>*</sup> <sub>ci</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                            | onless Shear Stress                                                                                                                                                                                                                                                                                                                                                  | Equation Used:                                                                                                   | 1                                                                                                              |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |                                                                                                                |
|                                                    | A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER | ALCONTRACTOR STATES TO A CONTRACTOR OF THE STATES                                                                                                                                                                                                                                                                          | Required for Entrain                                                                                                                                                                                                                                                                                                                                                 | ment of Largest P                                                                                                | article                                                                                                        |
| 1.797                                              | d <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~                                                                                                                                                                                                                                                                                                                          | ll Mean Depth (ft)                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  |                                                                                                                |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $d_r =$                                                                                                                                                                                                                                                                                                                    | $\tau_{ci}^* \gamma_s D_i$                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  |                                                                                                                |
| 1.909                                              | d/d <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                |
| 1.909                                              | u/u <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stability:                                                                                                                                                                                                                                                                                                                 | Degrading                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the second                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                      | And and a second se   | the second s |
|                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                            | ope Required for Ent                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  | st Particle                                                                                                    |
| Calcula<br>0.001                                   | ate Bankfull<br>S <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Required Bankfu                                                                                                                                                                                                                                                                                                            | ll Water Surface Slope                                                                                                                                                                                                                                                                                                                                               |                                                                                                                  | st Particle                                                                                                    |
|                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Required Bankfu                                                                                                                                                                                                                                                                                                            | ll Water Surface Slope                                                                                                                                                                                                                                                                                                                                               |                                                                                                                  | st Particle                                                                                                    |
| 0.001                                              | S <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Required Bankfu<br>S <sub>r</sub> =                                                                                                                                                                                                                                                                                        | ll Water Surface Slope<br>τ <sup>*</sup> <sub>ci</sub> γ <sub>s</sub> D <sub>i</sub><br>d                                                                                                                                                                                                                                                                            |                                                                                                                  | st Particle                                                                                                    |
|                                                    | S <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Required Bankfu<br>S <sub>r</sub> =<br><b>Stability:</b>                                                                                                                                                                                                                                                                   | ll Water Surface Slope<br>τ <sup>*</sup> <sub>ci</sub> γ <sub>s</sub> D <sub>i</sub><br>d<br>Degrading                                                                                                                                                                                                                                                               | (ft/ft)                                                                                                          | st Particle                                                                                                    |
| 0.001<br>1.909                                     | S <sub>r</sub><br>S/S <sub>r</sub><br>Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Required Bankfu<br>S <sub>r</sub> =<br>Stability:<br>liment Transport                                                                                                                                                                                                                                                      | ll Water Surface Slope<br>τ <sub>ciγs</sub> D <sub>i</sub><br>d<br>Degrading<br>Validation - Bankfull                                                                                                                                                                                                                                                                | (ft/ft)                                                                                                          | st Particle                                                                                                    |
| 0.001                                              | S <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Required Bankfu<br>S <sub>r</sub> =<br>Stability:<br>Iiment Transport<br>Hydraulic Radius                                                                                                                                                                                                                                  | ll Water Surface Slope<br>τ <sup>*</sup> <sub>ci</sub> γ <sub>s</sub> D <sub>i</sub><br>d<br>Degrading<br>Validation - Bankfull<br>s (ft)                                                                                                                                                                                                                            | (ft/ft)                                                                                                          | st Particle                                                                                                    |
| 0.001<br>1.909<br>2.75                             | S <sub>r</sub><br>S/S <sub>r</sub><br>R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Required Bankfu<br>S <sub>r</sub> =<br><b>Stability:</b><br>Iiment Transport<br>Hydraulic Radius<br>R =                                                                                                                                                                                                                    | ll Water Surface Slope<br>$\tau_{ci}^*\gamma_s D_i$<br>d<br>Degrading<br>Validation - Bankfull<br>$r_s$ (ft)<br>$A/W_p$                                                                                                                                                                                                                                              | (ft/ft)                                                                                                          | st Particle                                                                                                    |
| 0.001<br>1.909                                     | S <sub>r</sub><br>S/S <sub>r</sub><br>Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Required Bankfu<br>S <sub>r</sub> =<br>Stability:<br>Iiment Transport<br>Hydraulic Radius<br>R =<br>Bankfull Shear St                                                                                                                                                                                                      | ll Water Surface Slope<br>$\tau^*_{ci}\gamma_sD_i$<br>d<br>Degrading<br>Validation - Bankfull<br>(ft)<br>$A/W_p$<br>tress (lb/ft <sup>2</sup> )                                                                                                                                                                                                                      | (ft/ft)                                                                                                          | st Particle                                                                                                    |
| 0.001<br>1.909<br>2.75<br>0.487                    | S <sub>r</sub><br>S/S <sub>r</sub><br>R<br>T <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Required Bankfu<br>S <sub>r</sub> =<br><b>Stability:</b><br>Iiment Transport<br>Hydraulic Radius<br>R =                                                                                                                                                                                                                    | ll Water Surface Slope<br>$\tau_{ci}^*\gamma_s D_i$<br>d<br>Degrading<br>Validation - Bankfull<br>$r_s$ (ft)<br>$A/W_p$                                                                                                                                                                                                                                              | (ft/ft)                                                                                                          | st Particle                                                                                                    |
| 0.001<br>1.909<br>2.75                             | S <sub>r</sub><br>S/S <sub>r</sub><br>R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Required Bankfu<br>$S_r =$<br>Stability:<br>liment Transport<br>Hydraulic Radius<br>R =<br>Bankfull Shear Si<br>$\tau_c =$<br>Is the Bed Mater                                                                                                                                                                             | ll Water Surface Slope<br>$\tau_{ci}^*\gamma_sD_i$<br>d<br>Degrading<br>Validation - Bankfull<br>$r_s$ (ff)<br>$A/W_p$<br>tress (lb/ft <sup>2</sup> )<br>$\gamma RS$<br>ial Homogeneous?                                                                                                                                                                             | (ft/ft)<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>                                                                   |                                                                                                                |
| 0.001<br>1.909<br>2.75<br>0.487                    | S <sub>r</sub><br>S/S <sub>r</sub><br>R<br>T <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Required Bankfu<br>$S_r =$<br><b>Stability:</b><br><b>liment Transport</b><br>Hydraulic Radius<br>R =<br>Bankfull Shear So<br>$\tau_c =$<br>Is the Bed Mater<br>Determine from read                                                                                                                                        | ll Water Surface Slope<br>$\tau_{ci}^*\gamma_sD_i$<br>d<br>Degrading<br>Validation - Bankfull<br>(ft)<br>$A/W_p$<br>tress (lb/ft <sup>2</sup> )<br>$\gamma RS$<br>ial Homogeneous?<br>ch wide pebble count distrib                                                                                                                                                   | (ft/ft)                                                                                                          |                                                                                                                |
| 0.001<br>1.909<br>2.75<br>0.487                    | S <sub>r</sub><br>S/S <sub>r</sub><br>R<br>T <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Required Bankfu<br>$S_r =$<br>Stability:<br>liment Transport<br>Hydraulic Radius<br>R =<br>Bankfull Shear St<br>$\tau_c =$<br>Is the Bed Mater<br>Determine from reader<br>et al'' Curve Data, if                                                                                                                          | ll Water Surface Slope<br>$\tau_{ci}^*\gamma_sD_i$<br>d<br>Degrading<br>Validation - Bankfull<br>(ff)<br>$A/W_p$<br>tress (lb/ft <sup>2</sup> )<br>$\gamma RS$<br>ial Homogeneous?<br>th wide pebble count distrib<br>heterogeneous use "Colorad                                                                                                                     | (ft/ft)                                                                                                          |                                                                                                                |
| 0.001<br>1.909<br>2.75<br>0.487                    | S <sub>r</sub><br>S/S <sub>r</sub><br>R<br>T <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Required Bankfu<br>$S_r =$<br><b>Stability:</b><br><b>liment Transport</b><br>Hydraulic Radius<br>R =<br>Bankfull Shear Si<br>$\tau_c =$<br>Is the Bed Mater<br>Determine from reader<br>et al'' Curve Data, if<br>Movable Particle                                                                                        | ll Water Surface Slope<br>$\tau_{ci}^*\gamma_sD_i$<br>d<br>Degrading<br>Validation - Bankfull<br>$r_s$ (ft)<br>$A/W_p$<br>tress (lb/ft <sup>2</sup> )<br>$\gamma RS$<br>ial Homogeneous?<br>ch wide pebble count distrib<br>heterogeneous use "Colorad<br>Size (mm) At Bankfull                                                                                      | (ft/ft)                                                                                                          | s use "Leopole                                                                                                 |
| 0.001<br>1.909<br>2.75<br>0.487<br>N               | S <sub>r</sub><br>S/S <sub>r</sub><br>R<br>T <sub>c</sub><br>Y or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Required Bankfu<br>$S_r =$<br>Stability:<br>liment Transport<br>Hydraulic Radius<br>R =<br>Bankfull Shear St<br>$\tau_c =$<br>Is the Bed Mater<br>Determine from reader all Curve Data, if<br>Movable Particle<br>predicted by the                                                                                         | ll Water Surface Slope<br>$\tau_{ci}^*\gamma_sD_i$<br>d<br>Degrading<br>Validation - Bankfull<br>$r_s$ (ff)<br>$A/W_p$<br>tress (lb/ft <sup>2</sup> )<br>$\gamma RS$<br>ial Homogeneous?<br>ch wide pebble count distrib<br>heterogeneous use "Colorad<br>Size (mm) At Bankfull<br>Leopold, Wolman, & M                                                              | (ft/ft)                                                                                                          | s use "Leopold                                                                                                 |
| 0.001<br>1.909<br>2.75<br>0.487<br>N               | S <sub>r</sub><br>S/S <sub>r</sub><br>R<br>T <sub>c</sub><br>Y or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Required Bankfu<br>$S_r =$<br>Stability:<br>liment Transport<br>Hydraulic Radius<br>R =<br>Bankfull Shear St<br>$\tau_c =$<br>Is the Bed Mater<br>Determine from reader<br>et al" Curve Data, if<br>Movable Particle<br>predicted by the<br>Predicted Shear St                                                             | ll Water Surface Slope<br>$\tau^*_{ci}\gamma_sD_i$<br>d<br>Degrading<br>Validation - Bankfull<br>(ft)<br>$A/W_p$<br>tress (lb/ft <sup>2</sup> )<br>$\gamma RS$<br>ial Homogeneous?<br>ch wide pebble count distrib<br>heterogeneous use "Colorad<br>Size (mm) At Bankfull<br>Leopold, Wolman, & N<br>Stress (lbs/ft <sup>2</sup> ) Required                          | (ft/ft)<br>I Shear Stress<br>do" Curve Data.<br>Shear Stress<br>Miller 1964 Power-tu<br>d To Move D <sub>i</sub> | s use "Leopolo<br>rendline.                                                                                    |
| 0.001<br>1.909<br>2.75<br>0.487<br>N<br>N/A        | S <sub>r</sub><br>S/S <sub>r</sub><br>R<br>T <sub>c</sub><br>Y or N<br>mm <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Required Bankfu<br>$S_r =$<br>Stability:<br>liment Transport<br>Hydraulic Radius<br>R =<br>Bankfull Shear St<br>$\tau_c =$<br>Is the Bed Mater<br>Determine from reader<br>et al" Curve Data, if<br>Movable Particle<br>predicted by the<br>Predicted Shear St                                                             | ll Water Surface Slope<br>$\tau_{ci}^*\gamma_sD_i$<br>d<br>Degrading<br>Validation - Bankfull<br>$r_s$ (ff)<br>$A/W_p$<br>tress (lb/ft <sup>2</sup> )<br>$\gamma RS$<br>ial Homogeneous?<br>ch wide pebble count distrib<br>heterogeneous use "Colorad<br>Size (mm) At Bankfull<br>Leopold, Wolman, & M                                                              | (ft/ft)<br>I Shear Stress<br>do" Curve Data.<br>Shear Stress<br>Miller 1964 Power-tu<br>d To Move D <sub>i</sub> | s use "Leopolo<br>rendline.                                                                                    |
| 0.001<br>1.909<br>2.75<br>0.487<br>N<br>N/A<br>N/A | S <sub>r</sub><br>S/S <sub>r</sub><br>S<br>R<br>T <sub>c</sub><br>Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Required Bankfu<br>$S_r =$<br>Stability:<br>liment Transport<br>Hydraulic Radius<br>R =<br>Bankfull Shear St<br>$\tau_c =$<br>Is the Bed Mater<br>Determine from reader<br>et al" Curve Data, if<br>Movable Particle<br>predicted by the<br>Predicted Shear St<br>predicted by the                                         | ll Water Surface Slope<br>$\tau^*_{ci}\gamma_sD_i$<br>d<br>Degrading<br>Validation - Bankfull<br>(ft)<br>$A/W_p$<br>tress (lb/ft <sup>2</sup> )<br>$\gamma RS$<br>ial Homogeneous?<br>ch wide pebble count distrib<br>heterogeneous use "Colorad<br>Size (mm) At Bankfull<br>Leopold, Wolman, & N<br>Stress (lbs/ft <sup>2</sup> ) Required                          | (ft/ft)                                                                                                          | s use "Leopolo<br>rendline.                                                                                    |
| 0.001<br>1.909<br>2.75<br>0.487<br>N<br>N/A        | S <sub>r</sub><br>S/S <sub>r</sub><br>R<br>T <sub>c</sub><br>Y or N<br>mm <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Required Bankfu<br>$S_r =$<br>Stability:<br>liment Transport<br>Hydraulic Radius<br>R =<br>Bankfull Shear St<br>$\tau_c =$<br>Is the Bed Mater<br>Determine from reader<br>et al' Curve Data, if<br>Movable Particle<br>predicted by the<br>Predicted Shear St<br>predicted by the<br>Predicted by the<br>Predicted by the | ll Water Surface Slope<br>$\tau^*_{ci}\gamma_s D_i$<br>d<br>Degrading<br>Validation - Bankfull<br>(ft)<br>$A/W_p$<br>tress (lb/ft <sup>2</sup> )<br>$\gamma RS$<br>ial Homogeneous?<br>ch wide pebble count distrib<br>heterogeneous use "Colorad<br>Size (mm) At Bankfull<br>Leopold, Wolman, & N<br>Stress (lbs/ft <sup>2</sup> ) Required<br>Leopold, Wolman, & N | (ft/ft)                                                                                                          | s use "Leopolo<br>rendline.                                                                                    |
| 0.001<br>1.909<br>2.75<br>0.487<br>N<br>N/A<br>N/A | S <sub>r</sub><br>S/S <sub>r</sub><br>S<br>R<br>T <sub>c</sub><br>Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Required Bankfu<br>$S_r =$<br>Stability:<br>Iiment Transport<br>Hydraulic Radius<br>R =<br>Bankfull Shear Si<br>$\tau_c =$<br>Is the Bed Mater<br>Determine from reader<br>et al'' Curve Data, if<br>Movable Particle<br>predicted by the<br>Predicted by the<br>Movable Particle<br>predicted by the                      | ll Water Surface Slope<br>$\tau^*_{ci}\gamma_sD_i$<br>d<br>Degrading<br>Validation - Bankfull<br>(ft)<br>$A/W_p$<br>tress (lb/ft <sup>2</sup> )<br>$\gamma RS$<br>ial Homogeneous?<br>ch wide pebble count distrib<br>heterogeneous use "Colorad<br>Size (mm) At Bankfull<br>Leopold, Wolman, & N<br>Stress (lbs/ft <sup>2</sup> ) Required<br>Leopold, Wolman, & N  | (ft/ft)                                                                                                          | s use "Leopolo<br>rendline.                                                                                    |

#### **Entrainment Calculation Form**

| 0                              | : 2006237.00                                                                               |                                                                                                                                                                                                                                                                                           | Location: Polk County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |
|--------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                | : Little White                                                                             | Oak Creek                                                                                                                                                                                                                                                                                 | Reach: R1 XS #2 Proposed (Actua                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l Designed Slope)       |
| Date                           | : 1/19/2007                                                                                |                                                                                                                                                                                                                                                                                           | Observers: EMP TMB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
| Value                          | Variable                                                                                   | De autor d'Informe                                                                                                                                                                                                                                                                        | Definition<br>ation for Entrainment Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 7.07                           | 1                                                                                          | $D_{50}$ from Riffle of                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>#</sup> Choose one |
| 7.87                           | $D_{50}$ (mm)                                                                              |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Choose one              |
| 2.9                            | $D_{50} (mm)$                                                                              |                                                                                                                                                                                                                                                                                           | mple or Subpavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |
| 27                             | $D_i$ (mm)                                                                                 |                                                                                                                                                                                                                                                                                           | from Bar Sample or Pavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
| 0.089                          | $D_i(ft)$                                                                                  | Di (mm) / 304.8<br>Bankfull Water S                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
| 2                              | S (ft/ft)<br>d (ft)                                                                        | Bankfull Mean I                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
| 52                             | $A (ft^2)$                                                                                 | Bankfull Cross S                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |
| 29.7                           | W <sub>p</sub> (ft)                                                                        | Wetted Perimete                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
| 1.65                           | γ <sub>s</sub>                                                                             | Submerged Spec                                                                                                                                                                                                                                                                            | ific Weight of Sediment (1.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
| 62.4                           | $\gamma$ (lbs/ft <sup>3</sup> )                                                            | Density of Wate                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
|                                | С                                                                                          | alculation of Cri                                                                                                                                                                                                                                                                         | tical Dimensionless Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |
| 2.71                           | $D_{50}/\hat{D_{50}}$                                                                      | Range 3-7                                                                                                                                                                                                                                                                                 | Use Equation 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
|                                | -                                                                                          |                                                                                                                                                                                                                                                                                           | $\tau^*_{ci} = 0.0834 (D_{50}/\hat{D_{50}})^{-0.872}$                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |
| 3.43                           | $D_i/D_{50}$                                                                               | Range 1.3-3.0                                                                                                                                                                                                                                                                             | Use Equation 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
|                                | -                                                                                          |                                                                                                                                                                                                                                                                                           | $\tau^*_{ci} = 0.0384 (D_i / \hat{D}_{50})^{-0.887}$                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
| 0.035                          | τ <sup>*</sup> <sub>ci</sub>                                                               | Critical Dimensi                                                                                                                                                                                                                                                                          | onless Shear Stress Equation Used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                       |
| Ca                             | culate Bank                                                                                | full Mean Depth                                                                                                                                                                                                                                                                           | Required for Entrainment of Largest I                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Particle                |
| 1.785                          | dr                                                                                         |                                                                                                                                                                                                                                                                                           | ıll Mean Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
|                                |                                                                                            | d =                                                                                                                                                                                                                                                                                       | $\frac{\tau_{ci}^* \gamma_s D_i}{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
|                                | -                                                                                          | dr                                                                                                                                                                                                                                                                                        | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |
| 1.121                          | d/d <sub>r</sub>                                                                           | Stability:                                                                                                                                                                                                                                                                                | Degrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |
| Calcul                         | ate Bankfull                                                                               |                                                                                                                                                                                                                                                                                           | ope Required for Entrainment of Large                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | est Particle            |
| 0.003                          | Sr                                                                                         | _                                                                                                                                                                                                                                                                                         | ull Water Surface Slope (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
|                                |                                                                                            | $S_r =$                                                                                                                                                                                                                                                                                   | $\tau_{ci}^* \gamma_s D_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
| 4.404                          |                                                                                            |                                                                                                                                                                                                                                                                                           | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |
| 1.121                          | S/S <sub>r</sub>                                                                           | Stability:                                                                                                                                                                                                                                                                                | Degrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |
|                                |                                                                                            | The second s                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
| 4                              |                                                                                            | intent transport                                                                                                                                                                                                                                                                          | t Validation - Bankfull Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
| 1.75                           | R                                                                                          | Hydraulic Radiu                                                                                                                                                                                                                                                                           | s (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |
|                                | R                                                                                          | Hydraulic Radiu<br>R =                                                                                                                                                                                                                                                                    | s (ft)<br>A/W <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
| 1.75<br>0.312                  |                                                                                            | Hydraulic Radiu<br>R =<br>Bankfull Shear S                                                                                                                                                                                                                                                | s (ft)<br>A/W <sub>p</sub><br>Stress (lb/ft <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
| 0.312                          | _R<br>_τ <sub>c</sub>                                                                      | Hydraulic Radiu<br>R =<br>Bankfull Shear S<br>τ <sub>c</sub> =                                                                                                                                                                                                                            | s (ft)<br>A/W <sub>p</sub><br>Stress (lb/ft <sup>2</sup> )<br>γRS                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |
|                                | R                                                                                          | Hydraulic Radiu<br>R =<br>Bankfull Shear S<br>$\tau_c$ =<br>Is the Bed Mate:                                                                                                                                                                                                              | s (ft)<br>A/W <sub>p</sub><br>Stress (lb/ft <sup>2</sup> )<br>γRS<br>rial Homogeneous?                                                                                                                                                                                                                                                                                                                                                                                                                      | s use "Leopold          |
| 0.312                          | _R<br>_τ <sub>c</sub>                                                                      | Hydraulic Radiu<br>R =<br>Bankfull Shear S<br>$\tau_c$ =<br>Is the Bed Mate:<br>Determine from rea                                                                                                                                                                                        | s (ft)<br>A/W <sub>p</sub><br>Stress (lb/ft <sup>2</sup> )<br>γRS                                                                                                                                                                                                                                                                                                                                                                                                                                           | s use "Leopold          |
| 0.312<br>N                     | R<br>]τ <sub>c</sub><br>]Y or N                                                            | Hydraulic Radiu<br>R =<br>Bankfull Shear S<br>$\tau_c$ =<br>Is the Bed Mate:<br>Determine from rea<br>et al" Curve Data, ii                                                                                                                                                               | s (ft)<br>A/W <sub>p</sub><br>Stress (lb/ft <sup>2</sup> )<br>γRS<br>rial Homogeneous?<br>ach wide pebble count distribution. If homogeneous<br>f heterogeneous use "Colorado" Curve Data.                                                                                                                                                                                                                                                                                                                  | s use "Leopold          |
| 0.312                          | _R<br>_τ <sub>c</sub>                                                                      | Hydraulic Radiu<br>R =<br>Bankfull Shear S<br>$\tau_c$ =<br>Is the Bed Mate:<br>Determine from rea<br>et al" Curve Data, ii<br>Movable Particle                                                                                                                                           | s (ft)<br>A/W <sub>p</sub><br>Stress (lb/ft <sup>2</sup> )<br>γRS<br>rial Homogeneous?<br>ach wide pebble count distribution. If homogeneou                                                                                                                                                                                                                                                                                                                                                                 |                         |
| 0.312<br>N<br>N/A              | R<br>T <sub>c</sub><br>Y or N<br>mm <sup>*</sup>                                           | Hydraulic Radiu<br>R =<br>Bankfull Shear S<br>$\tau_c$ =<br>Is the Bed Mate:<br>Determine from rea<br>et al" Curve Data, it<br>Movable Particle<br>predicted by the                                                                                                                       | s (ft)<br>A/W <sub>p</sub><br>Stress (lb/ft <sup>2</sup> )<br>γRS<br>rial Homogeneous?<br>ach wide pebble count distribution. If homogeneous<br>f heterogeneous use "Colorado" Curve Data.<br>e Size (mm) At Bankfull Shear Stress                                                                                                                                                                                                                                                                          |                         |
| 0.312<br>N                     | R<br>]τ <sub>c</sub><br>]Y or N                                                            | Hydraulic Radiu<br>R =<br>Bankfull Shear S<br>$\tau_c$ =<br>Is the Bed Mate:<br>Determine from ree<br>et al" Curve Data, it<br>Movable Particle<br>predicted by the<br>Predicted Shear                                                                                                    | s (ft)<br>A/W <sub>p</sub><br>Stress (lb/ft <sup>2</sup> )<br>γRS<br>rial Homogeneous?<br>ach wide pebble count distribution. If homogeneous<br>f heterogeneous use "Colorado" Curve Data.<br>e Size (mm) At Bankfull Shear Stress<br>Leopold, Wolman, & Miller 1964 Power-1                                                                                                                                                                                                                                | rendline.               |
| 0.312<br>N<br>N/A<br>N/A       | R<br>T <sub>c</sub><br>Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup>                    | Hydraulic Radiu<br>R =<br>Bankfull Shear S<br>$\tau_c$ =<br>Is the Bed Mate:<br>Determine from rea<br>et al" Curve Data, ii<br>Movable Particle<br>predicted by the<br>Predicted Shear<br>predicted by the                                                                                | s (ft)<br>A/W <sub>p</sub><br>Stress (lb/ft <sup>2</sup> )<br>γRS<br>rial Homogeneous?<br>ach wide pebble count distribution. If homogeneous<br>the wide pebble count distribution. If homogeneous<br>the wide pebble count distribution. If homogeneous<br>the second stress of the second stress<br>the Size (mm) At Bankfull Shear Stress<br>the Leopold, Wolman, & Miller 1964 Power-to<br>Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub><br>the Leopold, Wolman, & Miller 1964 Power-to | rendline.               |
| 0.312<br>N<br>N/A              | R<br>T <sub>c</sub><br>Y or N<br>mm <sup>*</sup>                                           | Hydraulic Radiu<br>R =<br>Bankfull Shear S<br>$\tau_c$ =<br>Is the Bed Mate:<br>Determine from rea<br>et al" Curve Data, ii<br>Movable Particle<br>predicted by the<br>Predicted Shear<br>predicted by the<br>Movable Particle                                                            | s (ft)<br>A/W <sub>p</sub><br>Stress (lb/ft <sup>2</sup> )<br>γRS<br>rial Homogeneous?<br>ach wide pebble count distribution. If homogeneous<br>f heterogeneous use "Colorado" Curve Data.<br>e Size (mm) At Bankfull Shear Stress<br>Leopold, Wolman, & Miller 1964 Power-t<br>Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub><br>Leopold, Wolman, & Miller 1964 Power-t<br>e Size (mm) At Bankfull Shear Stress                                                                             | rendline.               |
| 0,312<br>N<br>N/A<br>N/A<br>65 | R<br>T <sub>c</sub><br>Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup><br>mm <sup>*</sup> | Hydraulic Radiu<br>R =<br>Bankfull Shear S<br>$\tau_c$ =<br>Is the Bed Mate:<br>Determine from rea<br>et al" Curve Data, ii<br>Movable Particle<br>predicted by the<br>Predicted Shear<br>predicted by the<br>Movable Particle<br>predicted by the                                        | s (ft)<br>A/W <sub>p</sub><br>Stress (lb/ft <sup>2</sup> )<br>γRS<br>rial Homogeneous?<br>ach wide pebble count distribution. If homogeneous<br>the wide pebble count distribution. If homogeneous<br>the wide pebble count distribution. If homogeneous<br>the second stress of the second stress<br>the Size (mm) At Bankfull Shear Stress<br>the Leopold, Wolman, & Miller 1964 Power-to<br>Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub><br>the Leopold, Wolman, & Miller 1964 Power-to | rendline.               |
| 0.312<br>N<br>N/A<br>N/A       | R<br>T <sub>c</sub><br>Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup>                    | Hydraulic Radiu<br>R =<br>Bankfull Shear S<br>$\tau_c =$<br>Is the Bed Mate:<br>Determine from rea<br>et al" Curve Data, it<br>Movable Particle<br>predicted by the<br>Predicted Shear<br>predicted by the<br>Movable Particle<br>predicted by the<br>Predicted by the<br>Predicted Shear | s (ft)<br>A/W <sub>p</sub><br>Stress (lb/ft <sup>2</sup> )<br>γRS<br>rial Homogeneous?<br>ach wide pebble count distribution. If homogeneous<br>f heterogeneous use "Colorado" Curve Data.<br>e Size (mm) At Bankfull Shear Stress<br>Leopold, Wolman, & Miller 1964 Power-t<br>Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub><br>: Leopold, Wolman, & Miller 1964 Power-t<br>e Size (mm) At Bankfull Shear Stress<br>Colorado Data Power-trendline.                                         | rendline.               |

#### Project: 2006237.00 Location: Polk County Stream: Little White Oak Creek Reach: R1 XS #2 Proposed (iteration 1) Date: 12/1/2006 Observers: EMP TMB Value Definition Variable **Required Information for Entrainment Analysis** Choose one 7.87 D<sub>50</sub> from Riffle or Pavement<sup>#</sup> D<sub>50</sub> (mm) 2.9 D 50 (mm) D<sub>50</sub> from Bar Sample or Subpavement<sup>#</sup> 27 Largest Particle from Bar Sample or Pavement# D<sub>i</sub> (mm) D<sub>i</sub> (ft) 0.089 Di (mm) / 304.8 (mm/ft) 0.0025 S (ft/ft) Bankfull Water Surface Slope 2.3 d (ft) Bankfull Mean Depth 61 A $(ft^2)$ Bankfull Cross Sectional Area 31.1 W<sub>p</sub> (ft) Wetted Perimeter 1.65 Submerged Specific Weight of Sediment (1.65) Ys 62.4 $\gamma (lbs/ft^3)$ Density of Water (62.4) **Calculation of Critical Dimensionless Shear Stress** 2.71 $D_{50}/D_{50}$ Range 3-7 Use Equation 1: $\tau^*_{ci} = 0.0834 (D_{50}/D_{50})^{-0.872}$ 3.43 $D_i/D_{50}$ Range 1.3-3.0 Use Equation 2: $\tau_{ci}^{*} = 0.0384 (D_i/D_{50})^{-0.887}$ Critical Dimensionless Shear Stress Equation Used: 1 0.035 τ сі Caculate Bankfull Mean Depth Required for Entrainment of Largest Particle Required Bankfull Mean Depth (ft) 2.042 d, $d_r = \frac{\tau_{ci}^* \gamma_s D_i}{S}$ d/d, 1.127 Stability: Degrading Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle 0.002 Required Bankfull Water Surface Slope (ft/ft) S. $S_r = \frac{\tau_{ci}^* \gamma_s D_i}{d}$ 1.127 S/S. Degrading Stability: Sediment Transport Validation - Bankfull Shear Stress Hydraulic Radius (ft) 1.96 R A/W<sub>n</sub> R =0.306 Bankfull Shear Stress (lb/ft<sup>2</sup>) yRS $\tau_c =$ N Y or N Is the Bed Material Homogeneous? Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data. Movable Particle Size (mm) At Bankfull Shear Stress N/A mm predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> N/A lb/ft<sup>2\*</sup> predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Movable Particle Size (mm) At Bankfull Shear Stress 64 mm predicted by the Colorado Data Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> lb/ft<sup>2\*</sup> 0.095 predicted by the Colorado Data Power-trendline. Taken from The Reference Reach Field Book , 2005 by Rosgen and Silvey

| Ctu                                       | 2006237.00                                                                                                            | Location: Polk County                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Little White                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Date:                                     | 12/1/2006                                                                                                             | Observers: EMP TMB                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Value                                     | Variable                                                                                                              | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                           | THE R. P. LEWIS CO., LANSING MICH.                                                                                    | Required Information for Entrainment Analysis                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7.87                                      | D <sub>50</sub> (mm)                                                                                                  | D <sub>50</sub> from Riffle or Pavement <sup>#</sup> <sup>#</sup> Choose one                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.9                                       | D <sub>50</sub> (mm)                                                                                                  | D <sub>50</sub> from Bar Sample or Subpavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                   |
| 27                                        | D <sub>i</sub> (mm)                                                                                                   | Largest Particle from Bar Sample or Pavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.089                                     | D <sub>i</sub> (ft)                                                                                                   | Di (mm) / 304.8 (mm/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0025                                    | S (ft/ft)                                                                                                             | Bankfull Water Surface Slope                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.1                                       | d (ft)                                                                                                                | Bankfull Mean Depth                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 52                                        | A $(ft^2)$                                                                                                            | Bankfull Cross Sectional Area                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 28.7                                      | W <sub>p</sub> (ft)                                                                                                   | Wetted Perimeter                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.65                                      | γ <sub>s</sub>                                                                                                        | Submerged Specific Weight of Sediment (1.65)                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 62.4                                      | $\gamma (lbs/ft^3)$                                                                                                   | Density of Water (62.4)                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                           |                                                                                                                       | Calculation of Critical Dimensionless Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.71                                      | $D_{50}/\hat{D_{50}}$                                                                                                 | Range 3-7 Use Equation 1:                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                           | _                                                                                                                     | $\tau^*_{ci} = 0.0834 (D_{50}/\hat{D_{50}})^{-0.872}$                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.43                                      | $D_i/D_{50}$                                                                                                          | Range 1.3-3.0 Use Equation 2:                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                           | -                                                                                                                     | $\tau^*_{ci} = 0.0384 (D_i / \hat{D}_{50})^{-0.887}$                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.035                                     | τ <sup>*</sup> <sub>ci</sub>                                                                                          | Critical Dimensionless Shear Stress Equation Used: 1                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ca                                        | culate Bank                                                                                                           | full Mean Depth Required for Entrainment of Largest Particle                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.042                                     | d <sub>r</sub>                                                                                                        | Required Bankfull Mean Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                           | -                                                                                                                     | $d_{t} = \underbrace{\tau_{ci}^{*} \gamma_{s} D_{i}}_{S}$                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                           | <b>.</b>                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.029                                     | d/d <sub>r</sub>                                                                                                      | Stability: Degrading                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           |                                                                                                                       | Water Surface Slope Required for Entrainment of Largest Particle                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.007                                     | C                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.002                                     | Sr                                                                                                                    | Required Bankfull Water Surface Slope (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.002                                     | Sr                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.029                                     | _                                                                                                                     | $S_r = \frac{\tau_{ci}^* \gamma_s D_i}{d}$                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                           | S/S <sub>r</sub>                                                                                                      | $S_r = \frac{\tau_{ci}^* \gamma_s D_i}{d}$ Stability: Degrading                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.029                                     | S/S <sub>r</sub><br>Sed                                                                                               | $S_{r} = \frac{\tau_{ci}^{*} \gamma_{s} D_{i}}{d}$ Stability: Degrading diment Transport Validation - Bankfull Shear Stress                                                                                                                                                                                                                                                                                                                                   |
|                                           | S/S <sub>r</sub>                                                                                                      | $S_{r} = \frac{\tau_{ci}^{*} \gamma_{s} D_{i}}{d}$ Stability: Degrading diment Transport Validation - Bankfull Shear Stress Hydraulic Radius (ft)                                                                                                                                                                                                                                                                                                             |
| 1.029<br>1.81                             | S/S <sub>r</sub><br>Sec<br>R                                                                                          | $S_{r} = \frac{\tau_{ci}^{*}\gamma_{s}D_{i}}{d}$ Stability: Degrading diment Transport Validation - Bankfull Shear Stress Hydraulic Radius (ft) $R = A/W_{p}$                                                                                                                                                                                                                                                                                                 |
| 1.029                                     | S/S <sub>r</sub><br>Sed                                                                                               | $S_{r} = \frac{\tau_{c}^{*} \gamma_{s} D_{i}}{d}$ Stability: Degrading diment Transport Validation - Bankfull Shear Stress Hydraulic Radius (ft) $R = A/W_{p}$ Bankfull Shear Stress (lb/ft <sup>2</sup> )                                                                                                                                                                                                                                                    |
| 1.029<br>1.81<br>0.283                    | S/S <sub>r</sub><br>Sec<br>R<br>T <sub>c</sub>                                                                        | $\begin{split} S_r &= \frac{\tau_{c}^* \gamma_s D_i}{d} \\ \hline Stability: & Degrading \\ \hline \hline \\ \hline $                                                                                                                                                                                                                                                                   |
| 1.029<br>1.81                             | S/S <sub>r</sub><br>Sec<br>R                                                                                          | $S_{r} = \frac{\tau_{c}^{*} \gamma_{s} D_{i}}{d}$ Stability: Degrading diment Transport Validation - Bankfull Shear Stress Hydraulic Radius (ft) $R = A/W_{p}$ Bankfull Shear Stress (lb/ft <sup>2</sup> )                                                                                                                                                                                                                                                    |
| 1.029<br>1.81<br>0.283                    | S/S <sub>r</sub><br>Sec<br>R<br>T <sub>c</sub>                                                                        | $S_{r} = \frac{\tau_{c}^{*} \gamma_{s} D_{i}}{d}$ Stability: Degrading diment Transport Validation - Bankfull Shear Stress Hydraulic Radius (ft) $R = A/W_{p}$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_{c} = \gamma RS$ Is the Bed Material Homogeneous?                                                                                                                                                                                            |
| 1.029<br>1.81<br>0.283<br>N               | S/S <sub>r</sub><br>Sec<br>R<br>T <sub>c</sub>                                                                        | $\begin{split} S_r &= \frac{\tau_{cl}^* \gamma_s D_i}{d} \\ \hline Stability: Degrading \\ \hline \hline \\ \hline $                                                                                                                                                                                                                                                                    |
| 1.029<br>1.81<br>0.283                    | S/S <sub>r</sub><br>Sec<br>R<br>T <sub>c</sub>                                                                        | $\begin{split} S_r &= \frac{\tau_{c}^* \gamma_s D_i}{d} \\ \hline Stability: Degrading \\ \hline \hline d \\ \hline Stability: Degrading \\ \hline diment Transport Validation - Bankfull Shear Stress \\ \hline Hydraulic Radius (ft) \\ R &= A/W_p \\ \hline Bankfull Shear Stress (lb/ft^2) \\ \tau_c &= \gamma RS \\ \hline Is the Bed Material Homogeneous? \\ \hline Determine from reach wide pebble count distribution. If homogeneous use "Leopold"$ |
| 1.029<br>1.81<br>0.283<br>N               | S/S <sub>r</sub><br>Sec<br>R<br>T <sub>c</sub><br>Y or N                                                              | $\begin{split} S_r &= \frac{\tau_{cl}^* \gamma_s D_i}{d} \\ \hline Stability: Degrading \\ \hline \hline \\ \hline $                                                                                                                                                                                                                                                                    |
| 1.029<br>1.81<br>0.283<br>N               | S/S <sub>r</sub><br>Sec<br>R<br>T <sub>c</sub><br>Y or N                                                              | $\begin{split} S_r &= \frac{\tau_{c}^* \gamma_s D_i}{d} \\ \hline Stability: Degrading \\ \hline \\ $                                                                                                                                                                                                                                                                         |
| 1.029<br>1.81<br>0.283<br>N               | S/S <sub>r</sub><br>Sec<br>R<br>T <sub>c</sub><br>Y or N                                                              | $\begin{split} S_r &= \frac{\tau_{c}^* \gamma_s D_i}{d} \\ \hline Stability: Degrading \\ \hline \\ $                                                                                                                                                                                                                                                                         |
| 1.029<br>1.81<br>0.283<br>N               | S/S <sub>r</sub><br>Sec<br>R<br>T <sub>c</sub><br>Y or N                                                              | $\begin{split} S_{r} &= \underbrace{\tau_{c}^{*} \gamma_{s} D_{i}}{d} \\ \hline Stability: Degrading \\ \hline \\ $                                                                                                                                                                                                                                                           |
| 1.029<br>1.81<br>0.283<br>N<br>N/A<br>N/A | S/S <sub>r</sub><br>Sec<br>R<br>T <sub>c</sub><br>Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup><br>mm <sup>*</sup> | $\begin{split} S_{r} &= \underbrace{\tau_{c}^{*} \gamma_{s} D_{i}}{d} \\ \hline Stability: Degrading \\ \hline \\ $                                                                                                                                                                                                                                                           |
| 1.029<br>1.81<br>0.283<br>N<br>N/A<br>N/A | S/S <sub>r</sub><br>Sec<br>R<br>T <sub>c</sub><br>Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup>                    | $\begin{split} S_{r} &= \underbrace{\tau_{c}^{*} \gamma_{s} D_{i}}{d} \\ \hline Stability: Degrading \\ \hline \\ $                                                                                                                                                                                                                                                           |

#### Project: 2006237.00 Location: Polk County Stream: Little White Oak Creek Reach: R1 XS #2 Proposed (iteration 3) Observers: EMP TMB Date: 12/1/2006 Value Variable Definition **Required Information for Entrainment Analysis** Choose one D<sub>50</sub> (mm) D<sub>50</sub> from Riffle or Pavement<sup>#</sup> 7.87 2.9 D 50 (mm) D<sub>50</sub> from Bar Sample or Subpavement<sup>#</sup> Largest Particle from Bar Sample or Pavement# 27 D; (mm) 0.089 D<sub>i</sub> (ft) Di (mm) / 304.8 (mm/ft) 0.0025 S (ft/ft) Bankfull Water Surface Slope 2 d (ft) Bankfull Mean Depth 52 A $(ft^2)$ Bankfull Cross Sectional Area W<sub>p</sub> (ft) 29.5 Wetted Perimeter 1.65 Submerged Specific Weight of Sediment (1.65) Ύs 62.4 $\gamma (lbs/ft)$ Density of Water (62.4) Calculation of Critical Dimensionless Shear Stress 2.71 $D_{50}/D_{50}$ Use Equation 1: Range 3-7 $\tau^*_{ci} = 0.0834 (D_{50}/\hat{D_{50}})^{-0.872}$ 3.43 $D_i/D_{50}$ Range 1.3-3.0 Use Equation 2: $\tau_{ci}^{*} = 0.0384 (D_i / \hat{D}_{50})^{-0.887}$ τ<sub>ci</sub> Critical Dimensionless Shear Stress Equation Used: 1 0.035 Caculate Bankfull Mean Depth Required for Entrainment of Largest Particle 2.042 Required Bankfull Mean Depth (ft) d, $d_r = \frac{\tau_{ci}^* \gamma_s D_i}{S}$ d/d, 0.980 Stability: Aggrading Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle Required Bankfull Water Surface Slope (ft/ft) 0.003 S, $S_r = \frac{\tau_{ci}^* \gamma_s D_i}{d}$ 0.980 S/S, Stability: Aggrading Sediment Transport Validation - Bankfull Shear Stress 1.76 R Hydraulic Radius (ft) A/Wn R =Bankfull Shear Stress (lb/ft<sup>2</sup>) 0.275 γRS $\tau_{c} =$ N Is the Bed Material Homogeneous? Y or N Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data. Movable Particle Size (mm) At Bankfull Shear Stress N/A mm predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> N/A lb/ft<sup>2\*</sup> predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Movable Particle Size (mm) At Bankfull Shear Stress 59 mm predicted by the Colorado Data Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> lb/ft<sup>2\*</sup> 0.095 predicted by the Colorado Data Power-trendline. Taken from The Reference Reach Field Book , 2005 by Rosgen and Silvey

|                                       | 2006237.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | inal            |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                       | Little White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Observers: EMP TMB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ing)            |
| Value                                 | 12/4/2006<br>Variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| Value                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Required Information for Entrainment Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| 9.17                                  | D <sub>50</sub> (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $D_{50}$ from Riffle or Pavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | # Choose of     |
| 0.1                                   | $\hat{D}_{50}(mm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $D_{50}$ from Bar Sample or Subpavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| 22                                    | $D_{50}(mm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Largest Particle from Bar Sample or Pavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| Seal of the seal of the second second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Di (mm) / 304.8 (mm/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| 0.072                                 | D <sub>i</sub> (ft)<br>S (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bankfull Water Surface Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| 0.01219                               | d (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bankfull Mean Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
| 1.62                                  | $A (ft^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bankfull Cross Sectional Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| 4.72                                  | $W_{p}$ (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Wetted Perimeter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| 1.65                                  | γs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Submerged Specific Weight of Sediment (1.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| 62.4                                  | $\gamma$ (lbs/ft <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Density of Water (62.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| 02.1                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calculation of Critical Dimensionless Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| 91.70                                 | $D_{50}/\hat{D_{50}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Range 3-7 Use Equation 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\tau^*_{ci} = 0.0834 (D_{50}/\hat{D_{50}})^{-0.872}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| 2.40                                  | $D_i/D_{50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Range 1.3-3.0 Use Equation 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ¥.              |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\tau^*_{\ ci} = 0.0384 (D_i/D_{50})^{-0.887}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
| 0.018                                 | τ <sup>*</sup> <sub>ci</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Critical Dimensionless Shear Stress Equation Used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2               |
| Ca                                    | culate Banl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | kfull Mean Depth Required for Entrainment of Largest I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Particle        |
| 0.173                                 | dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Required Bankfull Mean Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $d_{r} = \frac{\tau_{ci}^{*} \gamma_{s} D_{i}}{S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
|                                       | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| 2.085                                 | d/d <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stability: Degrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                       | and the second se | Water Surface Slope Required for Entrainment of Large                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | est Particle    |
| 0.006                                 | Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Required Bankfull Water Surface Slope (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $S_r = \frac{\tau_{ci}^* \gamma_s D_i}{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| 0.005                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| 2.085                                 | S/S <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stability: Degrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                       | Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | diment Transport Validation - Bankfull Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
| 0.34                                  | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hydraulic Radius (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
|                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $R = A/W_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| 0.34<br>0.261                         | R<br>τ <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| 0.261                                 | τ <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{split} R &= A/W_p \\ Bankfull Shear Stress (lb/ft^2) \\ \tau_c &= \gamma RS \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
|                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $R = A/W_{p}$ Bankfull Shear Stress (lb/ft <sup>2</sup> )<br>$\tau_{c} = \gamma RS$ Is the Bed Material Homogeneous?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 use "Leopold |
| 0.261                                 | τ <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{split} R &= A/W_p \\ Bankfull Shear Stress (lb/ft^2) \\ \tau_c &= \gamma RS \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15 USE "Leopold |
| 0.261                                 | τ <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{split} R &= A/W_p \\ Bankfull Shear Stress (lb/ft2) \\ \tau_c &= \gamma RS \\ \end{split} {$ Is the Bed Material Homogeneous? $ Determine from reach wide pebble count distribution. If homogeneous et al'' Curve Data, if heterogeneous use "Colorado" Curve Data. } \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15 USE "Leopold |
| 0.261                                 | τ <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{split} R &= A/W_p \\ Bankfull Shear Stress (lb/ft2) \\ \tau_c &= \gamma RS \\ Is the Bed Material Homogeneous? \\ Determine from reach wide pebble count distribution. If homogeneous et al" Curve Data, if heterogeneous use "Colorado" Curve Data. \\ Movable Particle Size (mm) At Bankfull Shear Stress \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| 0.261<br>N<br>N/A                     | τ <sub>c</sub><br>Y or N<br>mm <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{split} R &= A/W_p \\ Bankfull Shear Stress (lb/ft^2) \\ \tau_c &= \gamma RS \\ Is the Bed Material Homogeneous? \\ Determine from reach wide pebble count distribution. If homogeneous et al" Curve Data, if heterogeneous use "Colorado" Curve Data. \\ Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| 0.261<br>N                            | τ <sub>c</sub><br>Y or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{split} R &= A/W_p \\ Bankfull Shear Stress (lb/ft2) \\ \tau_c &= \gamma RS \\ Is the Bed Material Homogeneous? \\ Determine from reach wide pebble count distribution. If homogeneous et al" Curve Data, if heterogeneous use "Colorado" Curve Data. \\ Movable Particle Size (mm) At Bankfull Shear Stress \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | trendline.      |
| 0.261<br>N<br>N/A<br>N/A              | τ <sub>c</sub><br>Y or N<br>mm <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{split} R &= A/W_p \\ Bankfull Shear Stress (lb/ft^2) \\ \tau_c &= \gamma RS \\ Is the Bed Material Homogeneous? \\ Determine from reach wide pebble count distribution. If homogeneous et al" Curve Data, if heterogeneous use "Colorado" Curve Data. \\ Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-Predicted Shear Stress (lbs/ft2) Required To Move Di predicted by the Leopold, Wolman, & Miller 1964 Power-Predicted by the Leopold, Wolm$ | trendline.      |
| 0.261<br>N<br>N/A                     | τ <sub>c</sub><br>Y or N<br>mm <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $R = A/W_{p}$ Bankfull Shear Stress (lb/ft <sup>2</sup> )<br>$\tau_{c} = \gamma RS$ Is the Bed Material Homogeneous?<br>Determine from reach wide pebble count distribution. If homogeneous<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data.<br>Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-<br>Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub><br>predicted by the Leopold, Wolman, & Miller 1964 Power-<br>Movable Particle Size (mm) At Bankfull Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | trendline.      |
| 0.261<br>N<br>N/A<br>N/A<br>57        | T <sub>c</sub><br>Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup><br>mm <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $R = A/W_{p}$ Bankfull Shear Stress (lb/ft <sup>2</sup> )<br>$\tau_{c} = \gamma RS$ Is the Bed Material Homogeneous?<br>Determine from reach wide pebble count distribution. If homogeneous<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data.<br>Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-<br>Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub><br>predicted by the Leopold, Wolman, & Miller 1964 Power-<br>Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-<br>Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Colorado Data Power-trendline.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | trendline.      |
| 0.261<br>N<br>N/A<br>N/A              | T <sub>c</sub><br>T or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $R = A/W_{p}$ Bankfull Shear Stress (lb/ft <sup>2</sup> )<br>$\tau_{c} = \gamma RS$ Is the Bed Material Homogeneous?<br>Determine from reach wide pebble count distribution. If homogeneous<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data.<br>Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-<br>Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub><br>predicted by the Leopold, Wolman, & Miller 1964 Power-<br>Movable Particle Size (mm) At Bankfull Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | trendline.      |

C,

#### Location: Polk County Project: 2006237.00 Stream: Little White Oak Creek Reach: R1A XS #4 Proposed (Actual Designed Slope) Observers: EMP TMB Date: 1/19/2007 Definition Value Variable **Required Information for Entrainment Analysis** Choose one D<sub>50</sub> from Riffle or Pavement<sup>#</sup> 9.17 D<sub>50</sub> (mm) 0.1 D<sub>50</sub> (mm) D<sub>50</sub> from Bar Sample or Subpavement<sup>#</sup> Largest Particle from Bar Sample or Pavement# 22 $D_i(mm)$ 0.072 D<sub>i</sub> (ft) Di (mm) / 304.8 (mm/ft) Bankfull Water Surface Slope 0.0196 S (ft/ft) Bankfull Mean Depth 0.63 d (ft) Bankfull Cross Sectional Area $A (ft^2)$ 5 9.3 W<sub>p</sub> (ft) Wetted Perimeter 1.65 Submerged Specific Weight of Sediment (1.65) Ys 62.4 $\gamma (lbs/ft^3)$ Density of Water (62.4) **Calculation of Critical Dimensionless Shear Stress** 91.70 $D_{50}/D_{50}$ Range 3-7 Use Equation 1: $\tau^*_{ci} = 0.0834 (D_{50}/\hat{D_{50}})^{-0.872}$ Use Equation 2: $D_i/D_{50}$ Range 1.3-3.0 2.40 $\tau_{ci}^{*} = 0.0384 (D_i / D_{50})^{-0.887}$ 2 τ <sub>ci</sub> Critical Dimensionless Shear Stress Equation Used: 0.018 Caculate Bankfull Mean Depth Required for Entrainment of Largest Particle Required Bankfull Mean Depth (ft) 0.107 d, $d_r = \frac{\tau_{ci}^* \gamma_s D_i}{S}$ 5.868 d/d, Stability: Degrading Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle Required Bankfull Water Surface Slope (ft/ft) 0.003 S, $S_r = \frac{\tau_{ci}^* \gamma_s D_i}{d}$ 5.868 S/S. Stability: Degrading Sediment Transport Validation - Bankfull Shear Stress R Hydraulic Radius (ft) 0.54 A/W<sub>p</sub> R = Bankfull Shear Stress (lb/ft<sup>2</sup>) 0.658 γRS $\tau_c =$ N Y or N Is the Bed Material Homogeneous? Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data. Movable Particle Size (mm) At Bankfull Shear Stress N/A mm predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> N/A lb/ft<sup>2</sup> predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Movable Particle Size (mm) At Bankfull Shear Stress 112 mm predicted by the Colorado Data Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> 0.072 lb/ft<sup>2\*</sup> predicted by the Colorado Data Power-trendline. Taken from The Reference Reach Field Book , 2005 by Rosgen and Silvey

| Sueam                                  | : 2006237.00<br>: Little White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Location: Polk County           Oak Creek         Reach: R1A XS #4 Proposed (iteration 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                                   | : 12/5/2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Observers: EMP TMB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Value                                  | Variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| value                                  | Contraction of the second states of the second stat | Required Information for Entrainment Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9.17                                   | D <sub>50</sub> (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D <sub>50</sub> from Riffle or Pavement <sup>#</sup> <sup>#</sup> Choose one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.1                                    | $D_{50}(mm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $D_{50}$ from Bar Sample or Subpavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| THE AVENUE AND                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Largest Particle from Bar Sample or Pavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 22                                     | D <sub>i</sub> (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.072                                  | D <sub>i</sub> (ft)<br>S (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Di (mm) / 304.8 (mm/ft)<br>Bankfull Water Surface Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.0099                                 | d (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bankfull Mean Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5                                      | $A (ft^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bankfull Cross Sectional Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8.92                                   | $W_{p}$ (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Wetted Perimeter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.65                                   | γ <sub>s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Submerged Specific Weight of Sediment (1.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 62.4                                   | $\gamma$ (lbs/ft <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Density of Water (62.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 02.1                                   | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Calculation of Critical Dimensionless Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 91.70                                  | $D_{50}/\hat{D_{50}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Range 3-7 Use Equation 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\tau^*_{ci} = 0.0834 (D_{50}/D_{50})^{-0.872}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.40                                   | $D_i/D_{50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Range 1.3-3.0 Use Equation 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\tau^*_{ci} = 0.0384 (D_i / \hat{D_{50}})^{-0.887}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.018                                  | $\tau_{ci}^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Critical Dimensionless Shear Stress Equation Used: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| С                                      | aculate Bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cfull Mean Depth Required for Entrainment of Largest Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.213                                  | d <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Required Bankfull Mean Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $d_r = \frac{\tau_{ci}^* \gamma_s D_i}{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | u <sub>r</sub> S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.105                                  | d/d <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stability: Degrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Calcu                                  | late Bankfull                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Water Surface Slope Required for Entrainment of Largest Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.003                                  | Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Required Bankfull Water Surface Slope (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_r = \frac{\tau_{ci}^* \gamma_s D_i}{\tau_{ci}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_t - \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3.105                                  | S/S <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $S_r = \frac{d}{d}$<br>Stability: Degrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.105                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G<br>Stability: Degrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.105<br>0.56                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G         Stability:       Degrading         diment Transport Validation - Bankfull Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                        | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d       Stability:     Degrading       diment Transport Validation - Bankfull Shear Stress       Hydraulic Radius (ft) $R = A/W_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.56                                   | See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G       Stability:     Degrading       diment Transport Validation - Bankfull Shear Stress       Hydraulic Radius (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.56                                   | <br><br><br>Τ <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{tabular}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.56<br>0.346                          | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d         Stability:       Degrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft)         R = $A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c =$ $\gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneous use "Leopold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.56<br>0.346                          | <br><br><br>Τ <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d         Stability:       Degrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft)         R = $A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c =$ $\gamma RS$ Is the Bed Material Homogeneous?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.56<br>0.346<br>N                     | R<br>R<br>τ <sub>c</sub><br>Y or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d         Stability:       Degrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft)         R = $A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c =$ $\gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneous use "Leopold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.56<br>0.346                          | <br><br><br>Τ <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d         Stability:       Degrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft)         R = $A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c =$ $\gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.56<br>0.346<br>N<br>N/A              | R<br>R<br>τ <sub>c</sub><br>Y or N<br>mm <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dStability: Degradingdiment Transport Validation - Bankfull Shear StressHydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub>                                                                                                                                                                                                                                                                                                                                                       |
| 0.56<br>0.346<br>N                     | R<br>R<br>τ <sub>c</sub><br>Y or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dStability:Degradingdiment Transport Validation - Bankfull Shear StressHydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.56<br>0.346<br>N<br>N/A              | R<br>R<br>τ <sub>c</sub><br>Y or N<br>mm <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dStability:Degradingdiment Transport Validation - Bankfull Shear StressHydraulic Radius (ft)<br>$R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> )<br>$\tau_c = \gamma RS$ Is the Bed Material Homogeneous?<br>Determine from reach wide pebble count distribution. If homogeneous use "Leopold<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data.Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.<br>Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub><br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                                                                                                                                                                                                                               |
| 0.56<br>0.346<br>N<br>N/A              | R<br>R<br>τ <sub>c</sub><br>Y or N<br>mm <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dStability:Degradingdiment Transport Validation - Bankfull Shear StressHydraulic Radius (ft)<br>$R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> )<br>$\tau_c = \gamma RS$ Is the Bed Material Homogeneous?<br>Determine from reach wide pebble count distribution. If homogeneous use "Leopold<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data.Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.<br>Predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Movable Particle Size (mm) At Bankfull Shear Stress                                                                                                                                                                      |
| 0.56<br>0.346<br>N<br>N/A<br>N/A<br>70 | R<br>R<br>T <sub>c</sub><br>Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup><br>mm <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dStability:Degradingdiment Transport Validation - Bankfull Shear StressHydraulic Radius (ft)R = $A/W_p$ $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline. |
| 0.56<br>0.346<br>N<br>N/A<br>N/A       | R<br>T <sub>c</sub><br>Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dStability:Degradingdiment Transport Validation - Bankfull Shear StressHydraulic Radius (ft)<br>$R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> )<br>$\tau_c = \gamma RS$ Is the Bed Material Homogeneous?<br>Determine from reach wide pebble count distribution. If homogeneous use "Leopold<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data.Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.<br>Predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Movable Particle Size (mm) At Bankfull Shear Stress                                                                                                                                                                      |

#### Location: Polk County Project: 2006237.00 Reach: R1A XS #4 Proposed (iteration 2) Stream: Little White Oak Creek Observers: EMP TMB Date: 12/5/2006 Definition Variable Value Required Information for Entrainment Analysis Choose one D<sub>50</sub> from Riffle or Pavement<sup>#</sup> 9.17 D<sub>50</sub> (mm) 0.1 D<sub>50</sub> (mm) D<sub>50</sub> from Bar Sample or Subpavement<sup>#</sup> Largest Particle from Bar Sample or Pavement# 22 D<sub>i</sub> (mm) Di (mm) / 304.8 (mm/ft) D<sub>i</sub> (ft) 0.072 0.0099 S (ft/ft) Bankfull Water Surface Slope 0.63 d (ft) Bankfull Mean Depth Bankfull Cross Sectional Area 5 A $(ft^2)$ 9.16 $W_{p}$ (ft) Wetted Perimeter Submerged Specific Weight of Sediment (1.65) 1.65 Ys $\gamma (lbs/ft^3)$ Density of Water (62.4) 62.4 Calculation of Critical Dimensionless Shear Stress Use Equation 1: 91.70 $D_{50}/D_{50}$ Range 3-7 $\tau^*_{ci} = 0.0834 (D_{50}/\hat{D_{50}})^{-0.872}$ Use Equation 2: 2.40 $D_{1}/D_{50}$ Range 1.3-3.0 $\tau^*_{ci} = 0.0384 (D_i / \hat{D_{50}})^{-0.887}$ Critical Dimensionless Shear Stress Equation Used: 2 τα 0.018 Caculate Bankfull Mean Depth Required for Entrainment of Largest Particle Required Bankfull Mean Depth (ft) 0.213 d, $d_r = \frac{\tau_{ci}^* \gamma_s D_i}{S}$ 2.964 d/d, Stability: Degrading Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle Required Bankfull Water Surface Slope (ft/ft) 0.003 S $au_{ci}^*\gamma_s D_i$ d $S_r = -$ 2.964 S/S, Stability: Degrading Sediment Transport Validation - Bankfull Shear Stress Hydraulic Radius (ft) 0.55 R A/W<sub>p</sub> R =Bankfull Shear Stress (lb/ft<sup>2</sup>) 0.337 yRS $\tau_c =$ N Is the Bed Material Homogeneous? Y or N Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data. Movable Particle Size (mm) At Bankfull Shear Stress N/A mm predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> N/A lb/ft<sup>2\*</sup> predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Movable Particle Size (mm) At Bankfull Shear Stress 68 mm predicted by the Colorado Data Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> 0.072 lb/ft2\* predicted by the Colorado Data Power-trendline. Taken from The Reference Reach Field Book, 2005 by Rosgen and Silvey

#### Location: Polk County Project: 2006237.00 Reach: R2 Upper XS #1 (Existing) Stream: Little White Oak Creek Observers: EMP TMB Date: 12/4/2006 Definition Value Variable Required Information for Entrainment Analysis Choose one D<sub>50</sub> from Riffle or Pavement<sup>#</sup> 13.96 $D_{50}$ (mm) 3.87 D<sub>50</sub> (mm) D<sub>50</sub> from Bar Sample or Subpavement<sup>#</sup> Largest Particle from Bar Sample or Pavement# 37 D<sub>i</sub> (mm) Di (mm) / 304.8 (mm/ft) D<sub>i</sub>(ft) 0.121 0.00211 S (ft/ft) Bankfull Water Surface Slope Bankfull Mean Depth 3.14 d (ft) Bankfull Cross Sectional Area 76.12 A $(ft^2)$ $W_p$ (ft) Wetted Perimeter 28 Submerged Specific Weight of Sediment (1.65) 1.65 $\gamma_{s}$ $\gamma (lbs/ft^3)$ Density of Water (62.4) 62.4 Calculation of Critical Dimensionless Shear Stress $D_{50}/\hat{D_{50}}$ Use Equation 1: 3.61 Range 3-7 $\tau^{*}_{\ ci} = 0.0834 (D_{50}/\hat{D_{50}})^{\text{-}0.872}$ Use Equation 2: $D_i/D_{50}$ Range 1.3-3.0 2.65 $\tau^*_{ci} = 0.0384 (D_i / \hat{D_{50}})^{-0.887}$ Critical Dimensionless Shear Stress 1 Equation Used: 0.027 τ Caculate Bankfull Mean Depth Required for Entrainment of Largest Particle Required Bankfull Mean Depth (ft) 2.586 d. $\tau^{*}_{ci}\gamma_{s}D_{i}$ d<sub>r</sub> = \_\_\_\_\_ S 1.214 d/d, Stability: Degrading Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle Required Bankfull Water Surface Slope (ft/ft) 0.002 S $\tau^*_{ci}\gamma_s D_i$ d $S_r =$ 1.214 S/S, Stability: Degrading Sediment Transport Validation - Bankfull Shear Stress Hydraulic Radius (ft) 2.72 R A/Wp R =Bankfull Shear Stress (lb/ft<sup>2</sup>) 0.358 yRS $\tau_c =$ N Is the Bed Material Homogeneous? Y or N Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data. Movable Particle Size (mm) At Bankfull Shear Stress N/A mm predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> N/A lb/ft<sup>2</sup> predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Movable Particle Size (mm) At Bankfull Shear Stress 71 mm predicted by the Colorado Data Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> 0.146 lb/ft<sup>2\*</sup> predicted by the Colorado Data Power-trendline. Taken from The Reference Reach Field Book, 2005 by Rosgen and Silvey

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2006237.00<br>Little White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Oak Creek                                                                                                                                                                                                                                    | Location: <u>Polk Co</u><br>Reach: R2 Upper Proposed (Actual Desig                                                                                                                                                                                                                                                                                                                                                                                                                                | ned Slope)     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Date: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /19/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                              | Observers: EMP TMB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                              | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the second s                                                                                                                               | nation for Entrainment Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| 13.96 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | O <sub>50</sub> (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D <sub>50</sub> from Riffle                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Choose o       |
| 3.87 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Oˆ <sub>50</sub> (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D <sub>50</sub> from Bar Sa                                                                                                                                                                                                                  | mple or Subpavement $^{\#}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| <b>37</b> I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D <sub>i</sub> (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Largest Particle                                                                                                                                                                                                                             | from Bar Sample or Pavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| 0.121 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D <sub>i</sub> (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Di (mm) / 304.8                                                                                                                                                                                                                              | 3 (mm/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| 0.00171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bankfull Water S                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bankfull Mean I                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| and the second sec                                                                                                                                                                                                                                            | $A (ft^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bankfull Cross S                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| The second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | W <sub>p</sub> (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wetted Perimete                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ls (15.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125 V.V. (Marca)                                                                                                                                                                                                                             | cific Weight of Sediment (1.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| 62.4 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (lbs/ft <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Density of Wate                                                                                                                                                                                                                              | er (62.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and the second se | alculation of Cri                                                                                                                                                                                                                            | itical Dimensionless Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| 3.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $D_{50}/\hat{D_{50}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Range 3-7                                                                                                                                                                                                                                    | Use Equation 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                              | $\tau^*_{ci} = 0.0834 (D_{50}/D_{50})^{-0.872}$                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $D_i/D_{50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Range 1.3-3.0                                                                                                                                                                                                                                | Use Equation 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                              | $\tau^*_{ci} = 0.0384 (D_i / D_{50}^{-0.887})^{-0.887}$                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ť <sub>ci</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Critical Dimensi                                                                                                                                                                                                                             | ionless Shear Stress Equation Used:                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1              |
| Cac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ulate Bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | full Mean Depth                                                                                                                                                                                                                              | Required for Entrainment of Largest Parti                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cle            |
| and a real work of the local division of the local division of the local division of the local division of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                              | ull Mean Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $d_r =$                                                                                                                                                                                                                                      | $\frac{\tau_{ci}^*\gamma_s D_i}{S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| 0.752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d/d <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stability:                                                                                                                                                                                                                                   | Aggrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| Calculat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e Bankfull                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Water Surface S                                                                                                                                                                                                                              | lope Required for Entrainment of Largest I                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Particle       |
| And a state of the second | S <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                              | ull Water Surface Slope (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $S_r =$                                                                                                                                                                                                                                      | $= \frac{\tau_{ci}^{*} \gamma_{s} D_{i}}{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 0.752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S/S <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stability:                                                                                                                                                                                                                                   | Aggrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iment Transpor                                                                                                                                                                                                                               | t Validation - Bankfull Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                              | distant of the |
| 2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hydraulic Radiu                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R =                                                                                                                                                                                                                                          | = A/W <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | τ <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bankfull Shear S                                                                                                                                                                                                                             | Stress (lb $/ft^2$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| 0.226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                              | Siless (ID/IL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 0.226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| And and a series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\tau_c$ =                                                                                                                                                                                                                                   | = γRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| And and a series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | τ <sub>c</sub> =<br>Is the Bed Mate<br>Determine from re                                                                                                                                                                                     | = γRS<br>erial Homogeneous?<br>each wide pebble count distribution. If homogeneous us                                                                                                                                                                                                                                                                                                                                                                                                             | e "Leopold     |
| And and a series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | τ <sub>c</sub> =<br>Is the Bed Mate<br>Determine from re                                                                                                                                                                                     | = γRS<br>erial Homogeneous?                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e "Leopold     |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | τ <sub>c</sub> =<br>Is the Bed Mate<br>Determine from re<br>et al" Curve Data, i<br>Movable Particl                                                                                                                                          | = γRS<br>erial Homogeneous?<br>each wide pebble count distribution. If homogeneous us<br>if heterogeneous use "Colorado" Curve Data.<br>le Size (mm) At Bankfull Shear Stress                                                                                                                                                                                                                                                                                                                     |                |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | τ <sub>c</sub> =<br>Is the Bed Mate<br>Determine from re<br>et al" Curve Data, i<br>Movable Particl<br>predicted by the                                                                                                                      | = γRS<br>erial Homogeneous?<br>each wide pebble count distribution. If homogeneous us<br>if heterogeneous use "Colorado" Curve Data.<br>le Size (mm) At Bankfull Shear Stress<br>e Leopold, Wolman, & Miller 1964 Power-trend                                                                                                                                                                                                                                                                     |                |
| N<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y or N<br>mm*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | τ <sub>c</sub> =<br>Is the Bed Mate<br>Determine from re<br>et al" Curve Data, i<br>Movable Particl<br>predicted by the<br>Predicted Shear                                                                                                   | = γRS<br>erial Homogeneous?<br>each wide pebble count distribution. If homogeneous us<br>if heterogeneous use "Colorado" Curve Data.<br>le Size (mm) At Bankfull Shear Stress<br>e Leopold, Wolman, & Miller 1964 Power-trend<br>: Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub>                                                                                                                                                                                                  | dline.         |
| N<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | τ <sub>c</sub> =<br>Is the Bed Mate<br>Determine from re<br>et al" Curve Data, i<br>Movable Particl<br>predicted by the<br>Predicted Shear                                                                                                   | = γRS<br>erial Homogeneous?<br>each wide pebble count distribution. If homogeneous us<br>if heterogeneous use "Colorado" Curve Data.<br>le Size (mm) At Bankfull Shear Stress<br>e Leopold, Wolman, & Miller 1964 Power-trend                                                                                                                                                                                                                                                                     | dline.         |
| N<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\tau_c$ =<br>Is the Bed Mate<br>Determine from re<br>et al" Curve Data, i<br>Movable Particl<br>predicted by the<br>Predicted Shear<br>predicted by the                                                                                     | <ul> <li>γRS</li> <li>erial Homogeneous?</li> <li>each wide pebble count distribution. If homogeneous us if heterogeneous use "Colorado" Curve Data.</li> <li>le Size (mm) At Bankfull Shear Stress</li> <li>e Leopold, Wolman, &amp; Miller 1964 Power-trender</li> <li>e Leopold, Wolman, &amp; Miller 1964 Power-trender</li> </ul>                                                                                                                                                            | dline.         |
| N<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y or N<br>mm*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | τ <sub>c</sub> =<br>Is the Bed Mate<br>Determine from re<br>et al" Curve Data, i<br>Movable Particl<br>predicted by the<br>Predicted Shear<br>predicted by the<br>Movable Particl                                                            | <ul> <li>γRS</li> <li>erial Homogeneous?</li> <li>each wide pebble count distribution. If homogeneous us if heterogeneous use "Colorado" Curve Data.</li> <li>le Size (mm) At Bankfull Shear Stress</li> <li>e Leopold, Wolman, &amp; Miller 1964 Power-trender</li> <li>e Leopold, Wolman, &amp; Miller 1964 Power-trender</li> <li>le Size (mm) At Bankfull Shear Stress</li> </ul>                                                                                                             | dline.         |
| N<br>N/A<br>N/A<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup><br>mm <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | τ <sub>c</sub> =<br>Is the Bed Mate<br>Determine from re<br>et al" Curve Data, i<br>Movable Particl<br>predicted by the<br>Predicted Shear<br>predicted by the<br>Movable Particl<br>predicted by the                                        | <ul> <li>γRS</li> <li>erial Homogeneous?</li> <li>each wide pebble count distribution. If homogeneous us if heterogeneous use "Colorado" Curve Data.</li> <li>le Size (mm) At Bankfull Shear Stress</li> <li>e Leopold, Wolman, &amp; Miller 1964 Power-trend</li> <li>e Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub></li> <li>e Leopold, Wolman, &amp; Miller 1964 Power-trend</li> <li>le Size (mm) At Bankfull Shear Stress</li> <li>e Colorado Data Power-trendline.</li> </ul> | dline.         |
| N<br>N/A<br>N/A<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | τ <sub>c</sub> =<br>Is the Bed Mate<br>Determine from re<br>et al" Curve Data, i<br>Movable Particl<br>predicted by the<br>Predicted Shear<br>predicted by the<br>Movable Particl<br>predicted by the<br>Predicted by the<br>Predicted Shear | <ul> <li>γRS</li> <li>erial Homogeneous?</li> <li>each wide pebble count distribution. If homogeneous us if heterogeneous use "Colorado" Curve Data.</li> <li>le Size (mm) At Bankfull Shear Stress</li> <li>e Leopold, Wolman, &amp; Miller 1964 Power-trender</li> <li>e Leopold, Wolman, &amp; Miller 1964 Power-trender</li> <li>le Size (mm) At Bankfull Shear Stress</li> </ul>                                                                                                             | dline.         |

ć

#### **Entrainment Calculation Form**

(

`\ .

| Stream                                    | : 2006237.00<br>: Little White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coak Creek         Location: Polk Co           Coak Creek         Reach: R2 Upper Propos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sed (iteration 1)               |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Date                                      | : 12/4/2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Observers: EMP TMB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| Value                                     | Variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Required Information for Entrainment Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
| 13.96                                     | D <sub>50</sub> (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $D_{50}$ from Riffle or Pavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | " Choose o                      |
| 3.87                                      | D <sub>50</sub> (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D <sub>50</sub> from Bar Sample or Subpavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |
| 37                                        | D <sub>i</sub> (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Largest Particle from Bar Sample or Pavement $^{\#}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |
| 0.121                                     | D <sub>i</sub> (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Di (mm) / 304.8 (mm/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
| 0.0018                                    | S (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bankfull Water Surface Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |
| 2.6                                       | d (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bankfull Mean Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
| 76                                        | A $(ft^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bankfull Cross Sectional Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
| 34.7                                      | $W_{p}$ (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Wetted Perimeter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
| 1.65                                      | $\gamma_s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Submerged Specific Weight of Sediment (1.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |
| 62.4                                      | $\gamma$ (lbs/ft <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Density of Water (62.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calculation of Critical Dimensionless Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| 3.61                                      | $D_{50}/\hat{D_{50}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Range 3-7 Use Equation 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
|                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\tau^*_{ci} = 0.0834 (D_{50}/D_{50})^{-0.872}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| 2.65                                      | $D_i/D_{50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Range 1.3-3.0 Use Equation 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\tau^*_{ci} = 0.0384 (D_i / D_{50})^{-0.887}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |
| 0.027                                     | τ <sup>*</sup> <sub>ci</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Critical Dimensionless Shear Stress Equation Used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                               |
| Ca                                        | aculate Bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cfull Mean Depth Required for Entrainment of Largest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Particle                        |
| 3.032                                     | dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Required Bankfull Mean Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $d_r = \underbrace{\tau_{ci}^* \gamma_s D_i}_{S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | u <sub>r</sub> S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
| 0.858                                     | d/d <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stability: Aggrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |
| Calcul                                    | ate Bankfull                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Water Surface Slope Required for Entrainment of Larg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T 11                            |
| 0.000                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | water burlace biope nequired for Entrainment of Eng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gest Particle                   |
| 0.002                                     | Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Required Bankfull Water Surface Slope (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gest Particle                   |
| 0.002                                     | Contraction of the local distance of the loc | Required Bankfull Water Surface Slope (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gest Particle                   |
| 0.002                                     | Contraction of the local distance of the loc |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gest Particle                   |
| 0.002<br>0.858                            | Contraction of the local distance of the loc | Required Bankfull Water Surface Slope (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gest Particle                   |
|                                           | S/S <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Required Bankfull Water Surface Slope (ft/ft)<br>$S_r = \frac{\tau_{ci}^* \gamma_s D_i}{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gest Particle                   |
|                                           | S/S <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Required Bankfull Water Surface Slope (ft/ft) $S_r = \frac{\tau_{ei}^* \gamma_s D_i}{d}$ Stability:       Aggrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gest Particle                   |
| 0.858                                     | S/S <sub>e</sub><br>S/S <sub>e</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Required Bankfull Water Surface Slope (ft/ft) $S_r = \frac{\tau_{ei}^* \gamma_s D_i}{d}$ Stability:       Aggrading         diment Transport Validation - Bankfull Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gest Particle                   |
| 0.858                                     | S/S <sub>e</sub><br>S/S <sub>e</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Required Bankfull Water Surface Slope (ft/ft)<br>$S_{r} = \frac{\tau^{*}_{ci}\gamma_{s}D_{i}}{d}$ Stability: Aggrading<br>diment Transport Validation - Bankfull Shear Stress<br>Hydraulic Radius (ft)<br>$R = A/W_{p}$ Bankfull Shear Stress (lb/ft <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gest Particle                   |
| 0.858<br>2.19                             | S/S <sub>r</sub><br>S/S <sub>r</sub><br>Sed<br>R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Required Bankfull Water Surface Slope (ft/ft)<br>$S_{r} = \frac{\tau^{*}_{ci}\gamma_{s}D_{i}}{d}$ Stability: Aggrading<br>diment Transport Validation - Bankfull Shear Stress<br>Hydraulic Radius (ft)<br>$R = A/W_{p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gest Particle                   |
| 0.858<br>2.19                             | S/S <sub>r</sub><br>S/S <sub>r</sub><br>Sed<br>R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Required Bankfull Water Surface Slope (ft/ft) $S_r = \frac{\tau_{ei} \gamma_s D_i}{d}$ Stability:       Aggrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_e = \gamma RS$ Is the Bed Material Homogeneous?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
| 0.858<br>2.19<br>0.246                    | Sr<br>S/Sr<br>Sed<br>R<br>Tc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Required Bankfull Water Surface Slope (ft/ft) $S_r = \frac{\tau_{ci}\gamma_s D_i}{d}$ Stability:       Aggrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |
| 0.858<br>2.19<br>0.246                    | Sr<br>S/Sr<br>Sed<br>R<br>Tc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Required Bankfull Water Surface Slope (ft/ft) $S_r = \frac{\tau_{ei} \gamma_s D_i}{d}$ Stability:       Aggrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_e = \gamma RS$ Is the Bed Material Homogeneous?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
| 0.858<br>2.19<br>0.246                    | Sr<br>S/Sr<br>Sed<br>R<br>Tc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Required Bankfull Water Surface Slope (ft/ft) $S_r = \frac{\tau_{ei} \gamma_s D_i}{d}$ Stability:       Aggrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneet et al'' Curve Data, if heterogeneous use "Colorado" Curve Data.         Movable Particle Size (mm) At Bankfull Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ous use "Leopold                |
| 0.858<br>2.19<br>0.246<br>N               | Sr<br>S/Sr<br>Sed<br>R<br>Tr<br>Y or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Required Bankfull Water Surface Slope (ft/ft) $S_r = \frac{\tau_{ci} \gamma_s D_i}{d}$ Stability:       Aggrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Movable Particle Size (mm) At Bankfull Shear Stress         predict | ous use "Leopold                |
| 0.858<br>2.19<br>0.246<br>N               | Sr<br>S/Sr<br>Sed<br>R<br>Tr<br>Y or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Required Bankfull Water Surface Slope (ft/ft) $S_r = \frac{\tau_{ci} \gamma_s D_i}{d}$ Stability:       Aggrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution?         Bankfu | ous use "Leopold<br>-trendline. |
| 0.858<br>2.19<br>0.246<br>N               | Sr<br>S/Sr<br>Sed<br>R<br>Tc<br>Y or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Required Bankfull Water Surface Slope (ft/ft) $S_r = \frac{\tau_{ci} \gamma_s D_i}{d}$ Stability:       Aggrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Movable Particle Size (mm) At Bankfull Shear Stress         predict | ous use "Leopold<br>-trendline. |
| 0.858<br>2.19<br>0.246<br>N<br>N/A<br>N/A | S <sub>r</sub><br>S/S <sub>r</sub><br>Cect<br>R<br>T <sub>c</sub><br>Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Required Bankfull Water Surface Slope (ft/ft) $S_r = \frac{\tau_{ci} \gamma_s D_i}{d}$ Stability:       Aggrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         predicted by the Leopold, Wolman, & Miller 1964 Power         Predicted by the Leopold, Wolman, & Miller 1964 Power         Movable Particle Siz | ous use "Leopold<br>-trendline. |
| 0.858<br>2.19<br>0.246<br>N               | Sr<br>S/Sr<br>Sed<br>R<br>Tc<br>Y or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Required Bankfull Water Surface Slope (ft/ft) $S_r = \frac{\tau_{ci} \gamma_s D_i}{d}$ Stability:       Aggrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Is the Bed Material Homogeneous?         Movable Particle Size (mm) At Bankfull Shear Stress         predicted by the Leopold, Wolman, & Miller  | ous use "Leopold<br>-trendline. |
| 0.858<br>2.19<br>0.246<br>N<br>N/A<br>N/A | S <sub>r</sub><br>S/S <sub>r</sub><br>Cect<br>R<br>T <sub>c</sub><br>Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Required Bankfull Water Surface Slope (ft/ft) $S_r = \frac{\tau_{ci} \gamma_s D_i}{d}$ Stability:       Aggrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         Determine from reach wide pebble count distribution. If homogeneous?         predicted by the Leopold, Wolman, & Miller 1964 Power         Predicted by the Leopold, Wolman, & Miller 1964 Power         Movable Particle Siz | ous use "Leopold<br>-trendline. |

| Project                                                            | : 2006237.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Polk Co                                                                                                                                                                                                                                                       |                             |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Stream                                                             | : Little White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oak Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reach:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R2 Upper Propose                                                                                                                                                                                                                                              | d (iteration 2)             |
| Date                                                               | : 12/4/2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Observers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EMP TMB                                                                                                                                                                                                                                                       |                             |
| Value                                                              | Variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                               |                             |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second sec | ation for Entrainmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t Analysis                                                                                                                                                                                                                                                    |                             |
| 13.96                                                              | D <sub>50</sub> (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D <sub>50</sub> from Riffle o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or Pavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                               | <sup>#</sup> Choose one     |
| 3.87                                                               | D <sub>50</sub> (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mple or Subpavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                               |                             |
| 37                                                                 | D <sub>i</sub> (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Largest Particle f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | from Bar Sample or Pav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rement <sup>#</sup>                                                                                                                                                                                                                                           |                             |
| 0.121                                                              | $D_{i}$ (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Di (mm) / 304.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (mm/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                               |                             |
| 0.0018                                                             | S (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bankfull Water S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                               |                             |
| 2.5                                                                | d (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bankfull Mean D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                               |                             |
| 76                                                                 | A $(ft^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bankfull Cross S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ectional Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |                             |
| 35.8                                                               | W <sub>p</sub> (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wetted Perimete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                               |                             |
| 1.65                                                               | $\gamma_s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Submerged Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ific Weight of Sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t (1.65)                                                                                                                                                                                                                                                      |                             |
| 62.4                                                               | $\gamma (lbs/ft^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Density of Wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r (62.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                               |                             |
|                                                                    | and the second sec | Calculation of Cri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tical Dimensionless S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hear Stress                                                                                                                                                                                                                                                   |                             |
| 3.61                                                               | $D_{50}/\hat{D_{50}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Use Equation 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                               |                             |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\tau^*_{ci} = 0.0834 (D_{50}/D_{50})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) <sup>-0.872</sup>                                                                                                                                                                                                                                           |                             |
| 2.65                                                               | $D_i/D_{50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Range 1.3-3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Use Equation 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                               |                             |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\tau_{ci}^* = 0.0384 (D_i / D_{50})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.887                                                                                                                                                                                                                                                        |                             |
| 0.027                                                              | $\tau_{ci}^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Critical Dimensi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onless Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Equation Used:                                                                                                                                                                                                                                                | 1                           |
| C                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Required for Entrain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ment of Largest P                                                                                                                                                                                                                                             | article                     |
| 3.032                                                              | dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ıll Mean Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                               |                             |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                               |                             |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                               |                             |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $d_r =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{\tau_{ci}^* \gamma_s D_i}{S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                               |                             |
| 0.825                                                              | d/d <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d <sub>r</sub> =<br>Stability:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | τ <sub>ci</sub> γ <sub>s</sub> D <sub>i</sub><br>S<br>Aggrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                               |                             |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stability:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aggrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rainment of Large                                                                                                                                                                                                                                             | st Particle                 |
|                                                                    | ate Bankfull                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stability:<br>Water Surface SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aggrading<br>ope Required for Ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                               | st Particle                 |
| Calcul                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stability:<br>Water Surface SI<br>Required Bankfu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aggrading<br>ope Required for Ent<br>all Water Surface Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                               | st Particle                 |
| Calcul                                                             | ate Bankfull                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stability:<br>Water Surface SI<br>Required Bankfu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aggrading<br>ope Required for Ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                               | st Particle                 |
| Calcul                                                             | ate Bankfull                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stability:<br>Water Surface SI<br>Required Bankfu<br>S <sub>r</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aggrading<br>ope Required for Ent<br>all Water Surface Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                               | st Particle                 |
| Calcul<br>0.002                                                    | ate Bankfull<br>S <sub>r</sub><br>S/S <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stability:<br>Water Surface SI<br>Required Bankfu<br>S <sub>r</sub> =<br>Stability:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aggrading<br>ope Required for Ent<br>all Water Surface Slope<br>$\tau_{ci}^*\gamma_s D_i$<br>d<br>Aggrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (ft/ft)<br>-                                                                                                                                                                                                                                                  | st Particle                 |
| Calcul<br>0.002                                                    | ate Bankfull<br>S <sub>r</sub><br>S/S <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stability:<br>Water Surface SI<br>Required Bankfu<br>S <sub>r</sub> =<br>Stability:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aggrading<br>ope Required for Ent<br>all Water Surface Slope<br>$\frac{\tau_{ci}^*\gamma_s D_i}{d}$<br>Aggrading<br>t Validation - Bankful                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ft/ft)<br>-                                                                                                                                                                                                                                                  | st Particle                 |
| Calcul<br>0.002<br>0.825                                           | ate Bankfull<br>S <sub>r</sub><br>S/S <sub>r</sub><br>S/S <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stability:<br>Water Surface SI<br>Required Bankfu<br>S <sub>r</sub> =<br>Stability:<br>liment Transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aggrading<br>lope Required for Ent<br>all Water Surface Slope<br>$\tau_{ci}\gamma_sD_i$<br>d<br>Aggrading<br>t Validation - Bankful<br>s (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ft/ft)<br>-                                                                                                                                                                                                                                                  | st Particle                 |
| Calcul<br>0.002<br>0.825                                           | ate Bankfull<br>S <sub>r</sub><br>S/S <sub>r</sub><br><u>S</u> /S <sub>r</sub><br><u>Sec</u><br>R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stability:<br>Water Surface SI<br>Required Bankfu<br>S <sub>r</sub> =<br>Stability:<br>Hydraulic Radiu<br>R =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aggrading<br>ope Required for Ent<br>all Water Surface Slope<br>$\tau_{ci}\gamma_s D_i$<br>d<br>Aggrading<br>t Validation - Bankful<br>s (ft)<br>A/W <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ft/ft)<br>-                                                                                                                                                                                                                                                  | st Particle                 |
| Calcul<br>0.002<br>0.825<br>2.12                                   | ate Bankfull<br>S <sub>r</sub><br>S/S <sub>r</sub><br>S/S <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stability:<br>Water Surface SI<br>Required Bankfu<br>S <sub>r</sub> =<br>Stability:<br>Iiment Transport<br>Hydraulic Radiu<br>R =<br>Bankfull Shear S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aggrading<br>ope Required for Ent<br>all Water Surface Slope<br>$\frac{\tau^*_{ci}\gamma_s D_i}{d}$<br>Aggrading<br>t Validation - Bankful<br>s (ft)<br>A/W <sub>p</sub><br>Stress (lb/ft <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                     | (ft/ft)<br>-                                                                                                                                                                                                                                                  | st Particle                 |
| Calcul<br>0.002<br>0.825<br>2.12<br>0.238                          | ate Bankfull<br>$S_{\epsilon}$<br>$S/S_{\epsilon}$<br>$S/S_{\epsilon}$<br>R<br>$T_{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stability:         Water Surface SI         Required Bankfu $S_r =$ Stability:         Himent Transport         Hydraulic Radiu         R =         Bankfull Shear S $\tau_c =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aggrading<br>ope Required for Ent<br>all Water Surface Slope<br>$\tau_{ci}^*\gamma_s D_i$<br>d<br>Aggrading<br>t Validation - Bankful<br>s (ft)<br>$from A/W_p$<br>Stress (lb/ft <sup>2</sup> )<br>$\gamma RS$                                                                                                                                                                                                                                                                                                                                                                                                               | (ft/ft)<br>-                                                                                                                                                                                                                                                  | st Particle                 |
| Calcul<br>0.002<br>0.825<br>2.12                                   | ate Bankfull<br>S <sub>r</sub><br>S/S <sub>r</sub><br><u>S</u> /S <sub>r</sub><br><u>S</u> c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stability:         Water Surface SI         Required Bankfu $S_r =$ Stability:         Iiment Transport         Hydraulic Radiu         R =         Bankfull Shear S $\tau_c =$ Is the Bed Mate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aggrading<br>ope Required for Ent<br>all Water Surface Slope<br>$\frac{\tau^*_{ci}\gamma_s D_i}{d}$<br>Aggrading<br>t Validation - Bankful<br>s (ft)<br>A/W <sub>p</sub><br>Stress (lb/ft <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                     | (ft/ft)<br>-<br>1 Shear Stress                                                                                                                                                                                                                                |                             |
| Calcul<br>0.002<br>0.825<br>2.12<br>0.238                          | ate Bankfull<br>$S_{\epsilon}$<br>$S/S_{\epsilon}$<br>$S/S_{\epsilon}$<br>R<br>$T_{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stability:         Water Surface SI         Required Bankfu $S_r =$ Stability:         Iment Transport         Hydraulic Radiu         R =         Bankfull Shear S $\tau_c =$ Is the Bed Mate:         Determine from rest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aggrading<br>ope Required for Ent<br>all Water Surface Slope<br>$\frac{\tau^*_{ci}\gamma_s D_i}{d}$<br>Aggrading<br>t Validation - Bankful<br>s (ft)<br>ft A/W <sub>p</sub><br>Stress (lb/ft <sup>2</sup> )<br>rial Homogeneous?                                                                                                                                                                                                                                                                                                                                                                                             | (ft/ft)<br>-<br>1 Shear Stress<br>bution. If homogeneou                                                                                                                                                                                                       |                             |
| Calcul<br>0.002<br>0.825<br>2.12<br>0.238<br>N                     | ate Bankfull<br>$S_t$<br>$S/S_t$<br>$S/S_t$<br>Sec<br>R<br>$T_c$<br>Y or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stability:         Water Surface SI         Required Bankfu $S_r =$ Stability:         Iiment Transport         Hydraulic Radiu         R =         Bankfull Shear S $\tau_c =$ Is the Bed Mate:         Determine from re:         et al" Curve Data, it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aggrading<br>ope Required for Ent<br>all Water Surface Slope<br>$\tau_{ci}\gamma_sD_i$<br>d<br>Aggrading<br>t Validation - Bankful<br>s (ft)<br>$A/W_p$<br>Stress (lb/ft <sup>2</sup> )<br>$\gamma RS$<br>rial Homogeneous?<br>ach wide pebble count distri<br>f heterogeneous use "Colora                                                                                                                                                                                                                                                                                                                                   | (ft/ft)<br>-<br>-<br>-<br>I Shear Stress<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                            |                             |
| Calcul<br>0.002<br>0.825<br>2.12<br>0.238                          | ate Bankfull<br>$S_{\epsilon}$<br>$S/S_{\epsilon}$<br>$S/S_{\epsilon}$<br>R<br>$T_{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stability:         Water Surface SI         Required Bankfu $S_r =$ Stability:         Iiment Transport         Hydraulic Radiu         R =         Bankfull Shear S $\tau_c =$ Is the Bed Mate:         Determine from reset all Curve Data, it         Movable Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aggrading         ope Required for Ent         all Water Surface Slope $\tau_{ci}\gamma_sD_i$ d         Aggrading         t Validation - Bankful         s (ft) $A/W_p$ Stress (lb/ft <sup>2</sup> ) $\gamma RS$ rial Homogeneous?         ach wide pebble count distrif         f heterogeneous use "Colora         e Size (mm) At Bankful                                                                                                                                                                                                                                                                                  | (ft/ft)<br>-<br>I Shear Stress<br>bution. If homogeneou<br>do" Curve Data.                                                                                                                                                                                    | s use "Leopold              |
| Calcul<br>0.002<br>0.825<br>2.12<br>0.238<br>N<br>N/A              | ate Bankfull<br>$S_r$<br>$S/S_r$<br>$S/S_r$<br>R<br>$T_c$<br>Y or N<br>mm <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stability:         Water Surface SI         Required Bankfu $S_r =$ Stability:         Iiment Transport         Hydraulic Radiu         R =         Bankfull Shear S $\tau_c =$ Is the Bed Mate:         Determine from reset all Curve Data, it         Movable Particle         predicted by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Aggrading<br>ope Required for Ent<br>all Water Surface Slope<br>$\tau_{ci}\gamma_sD_i$<br>d<br>Aggrading<br>t Validation - Bankful<br>s (ft)<br>$A/W_p$<br>Stress (lb/ft <sup>2</sup> )<br>$\gamma RS$<br>rial Homogeneous?<br>ach wide pebble count distri<br>f heterogeneous use "Colora                                                                                                                                                                                                                                                                                                                                   | (ft/ft)<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                        | s use "Leopold              |
| Calcul<br>0.002<br>0.825<br>2.12<br>0.238<br>N                     | ate Bankfull<br>$S_t$<br>$S/S_t$<br>$S/S_t$<br>Sec<br>R<br>$T_c$<br>Y or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stability:         Water Surface SI         Required Bankfu $S_r =$ Stability:         Iiment Transport         Hydraulic Radiu         R =         Bankfull Shear S $\tau_c =$ Is the Bed Mate:         Determine from reader all Curve Data, it         Movable Particle         predicted by the         Predicted Shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aggrading         ope Required for Ent         all Water Surface Slope $\tau^*_{ci} \gamma_s D_i$ d         Aggrading         t Validation - Bankful         s (ft)         A/Wp         Stress (lb/ft <sup>2</sup> )         rial Homogeneous?         ach wide pebble count distrift         f heterogeneous use "Colora         e Size (mm) At Bankful         Leopold, Wolman, & N                                                                                                                                                                                                                                       | (ft/ft)<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                        | s use "Leopold<br>rendline. |
| Calcul<br>0.002<br>0.825<br>2.12<br>0.238<br>N<br>N/A              | ate Bankfull<br>$S_r$<br>$S/S_r$<br>$S/S_r$<br>R<br>$T_c$<br>Y or N<br>mm <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stability:         Water Surface SI         Required Bankfu $S_r =$ Stability:         Iiment Transport         Hydraulic Radiu         R =         Bankfull Shear S $\tau_c =$ Is the Bed Mate:         Determine from ready         et al" Curve Data, it         Movable Particle         predicted by the         Predicted Shear         predicted by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aggrading         ope Required for Ent         all Water Surface Slope $\tau^*_{ci} \gamma_s D_i$ d         Aggrading         t Validation - Bankful         s (ft) $A/W_p$ Stress (lb/ft <sup>2</sup> )         erial Homogeneous?         ach wide pebble count distrift         f heterogeneous use "Colora         e Size (mm) At Bankful         2. Leopold, Wolman, & N         Stress (lbs/ft <sup>2</sup> ) Required         2. Leopold, Wolman, & N                                                                                                                                                                 | (ft/ft)<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                        | s use "Leopold<br>rendline. |
| Calcul<br>0.002<br>0.825<br>2.12<br>0.238<br>N<br>N/A              | ate Bankfull<br>$S_r$<br>$S/S_r$<br>$S/S_r$<br>R<br>$T_c$<br>Y or N<br>mm <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stability:         Water Surface SI         Required Bankfu $S_r =$ Stability:         Iiment Transport         Hydraulic Radiu         R =         Bankfull Shear S $\tau_c =$ Is the Bed Mate:         Determine from reader all Curve Data, it         Movable Particle         predicted by the         Predicted Shear         predicted by the         Movable Particle         Predicted Shear         predicted by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aggrading         ope Required for Ent         all Water Surface Slope $\tau^*_{ci} \gamma_s D_i$ d         Aggrading         t Validation - Bankful         s (ft) $+$ A/W <sub>p</sub> Stress (lb/ft <sup>2</sup> ) $rial$ Homogeneous?         ach wide pebble count distrift         f heterogeneous use "Colora         e Size (mm) At Bankful         : Leopold, Wolman, & N         Stress (lbs/ft <sup>2</sup> ) Required         : Leopold, Wolman, & N         Stress (lbs/ft <sup>2</sup> ) Required         : Leopold, Wolman, & N         Stress (lbs/ft <sup>2</sup> ) Required         : Leopold, Wolman, & N | (ft/ft)<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                        | s use "Leopold<br>rendline. |
| Calcul<br>0.002<br>0.825<br>2.12<br>0.238<br>N<br>N/A<br>N/A       | ate Bankfull<br>$S_r$<br>$S/S_r$<br>R<br>$\tau_c$<br>Y or N<br>$mm^*$<br>$lb/ft^{2^*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stability:         Water Surface SI         Required Bankfu $S_r =$ Stability:         Iiment Transport         Hydraulic Radiu         R =         Bankfull Shear S $\tau_c =$ Is the Bed Mate:         Determine from reader all Curve Data, it         Movable Particle         predicted by the         Predicted Shear         predicted by the         Movable Particle         predicted by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aggrading         ope Required for Ent         all Water Surface Slope $\tau^*_{ci} \gamma_s D_i$ d         Aggrading         t Validation - Bankful         s (ft) $A/W_p$ Stress (lb/ft <sup>2</sup> )         ach wide pebble count distrift         f heterogeneous?         ach wide pebble count distrift         f heterogeneous use "Colora         e Size (mm) At Bankful         : Leopold, Wolman, & N         Stress (lbs/ft <sup>2</sup> ) Require         : Leopold, Wolman, & N         stress (lbs/ft <sup>2</sup> ) Require         : Colorado Data Power-                                                  | (ft/ft)<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                        | s use "Leopold<br>rendline. |
| Calcul<br>0.002<br>0.825<br>2.12<br>0.238<br>N<br>N/A<br>N/A       | ate Bankfull<br>$S_r$<br>$S/S_r$<br>R<br>$\tau_c$<br>Y or N<br>$mm^*$<br>$lb/ft^{2^*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stability:         Water Surface SI         Required Bankfu $S_r =$ Stability:         Iiment Transport         Hydraulic Radiu         R =         Bankfull Shear S $\tau_c =$ Is the Bed Mate:         Determine from reader all Curve Data, it         Movable Particle         predicted by the         Predicted Shear         Movable Particle         predicted by the         Predicted Shear         Predicted Shear         Predicted Shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aggrading         ope Required for Ent         all Water Surface Slope $\tau^*_{ci} \gamma_s D_i$ d         Aggrading         t Validation - Bankful         s (ft) $A/W_p$ Stress (lb/ft <sup>2</sup> ) $\gamma RS$ rial Homogeneous?         ach wide pebble count distrif         f heterogeneous use "Colora         e Size (mm) At Bankful         Leopold, Wolman, & N         Stress (lbs/ft <sup>2</sup> ) Requiree         c Loopold, Wolman, & N         Stress (lbs/ft <sup>2</sup> ) Requiree         Colorado Data Power-         Stress (lbs/ft <sup>2</sup> ) Requiree                                        | (ft/ft)<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                        | s use "Leopold<br>rendline. |
| Calcul<br>0.002<br>0.825<br>2.12<br>0.238<br>N<br>N/A<br>N/A<br>S3 | ate Bankfull<br>Sr<br>S/Sr<br>S/Sr<br>R<br>$\tau_c$<br>Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup><br>mm <sup>*</sup><br>lb/ft <sup>2*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stability:         Water Surface SI         Required Bankfu $S_r =$ Stability:         Iiment Transport         Hydraulic Radiu         R =         Bankfull Shear S $\tau_c =$ Is the Bed Mater         Determine from recet al" Curve Data, if         Movable Particle         predicted by the         Predicted Shear         predicted by the         Predicted by the         Predicted Shear         predicted by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aggrading         ope Required for Ent         all Water Surface Slope $\tau^*_{ci} \gamma_s D_i$ d         Aggrading         t Validation - Bankful         s (ft) $A/W_p$ Stress (lb/ft <sup>2</sup> )         ach wide pebble count distrift         f heterogeneous?         ach wide pebble count distrift         f heterogeneous use "Colora         e Size (mm) At Bankful         : Leopold, Wolman, & N         Stress (lbs/ft <sup>2</sup> ) Require         : Leopold, Wolman, & N         stress (lbs/ft <sup>2</sup> ) Require         : Colorado Data Power-                                                  | (ft/ft)<br>I Shear Stress<br>I Shear Stress<br>bution. If homogeneou<br>do" Curve Data.<br>I Shear Stress<br>Willer 1964 Power-t<br>d To Move D <sub>i</sub><br>Miller 1964 Power-t<br>I Shear Stress<br>trendline.<br>d To Move D <sub>i</sub><br>trendline. | s use "Leopold<br>rendline. |

(

Ç -

ς.

#### Location: Polk County Project: 2006237.00 Reach: R2 Lower XS #4 (Existing) Stream: Little White Oak Creek Observers: EMP TMB Date: 12/4/2006 Definition Value Variable **Required Information for Entrainment Analysis** Choose one D<sub>50</sub> from Riffle or Pavement<sup>#</sup> 4.25 D<sub>50</sub> (mm) D<sub>50</sub> from Bar Sample or Subpavement<sup>#</sup> 0.1 D<sub>50</sub> (mm) Largest Particle from Bar Sample or Pavement# D<sub>i</sub> (mm) 21 0.069 D<sub>i</sub> (ft) Di (mm) / 304.8 (mm/ft) 0.001889 Bankfull Water Surface Slope S (ft/ft) Bankfull Mean Depth 3.49 d (ft) A $(ft^2)$ Bankfull Cross Sectional Area 99.68 W<sub>p</sub> (ft) Wetted Perimeter 32.87 1.65 Submerged Specific Weight of Sediment (1.65) Ys 62.4 $\gamma (lbs/ft^3)$ Density of Water (62.4) Calculation of Critical Dimensionless Shear Stress 42.50 $D_{50}/D_{50}$ Range 3-7 Use Equation 1: $\tau^*_{ci} = 0.0834 (D_{50}/\hat{D_{50}})^{-0.872}$ $D_i/D_{50}$ Range 1.3-3.0 Use Equation 2: 4.94 $\tau^*_{ci} = 0.0384 (D_i / \hat{D_{50}})^{-0.887}$ 2 Critical Dimensionless Shear Stress τ сі Equation Used: 0.009 Caculate Bankfull Mean Depth Required for Entrainment of Largest Particle Required Bankfull Mean Depth (ft) 0.560 d, $d_r = \frac{\tau_{ci}^* \gamma_s D_i}{S}$ d/d, 6.230 Stability: Degrading Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle Required Bankfull Water Surface Slope (ft/ft) 0.000 S, $\frac{\tau_{ci}^* \gamma_s D_i}{d}$ $S_r = -$ 6.230 S/S, Stability: Degrading Sediment Transport Validation - Bankfull Shear Stress Hydraulic Radius (ft) 3.03 R R =A/W<sub>p</sub> Bankfull Shear Stress (lb/ft<sup>2</sup>) 0.357 $\tau_c =$ yRS N Y or N Is the Bed Material Homogeneous? Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data. Movable Particle Size (mm) At Bankfull Shear Stress N/A mm predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> N/A lb/ft<sup>2</sup> predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Movable Particle Size (mm) At Bankfull Shear Stress 71 mm predicted by the Colorado Data Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> 0.068 lb/ft<sup>2\*</sup> predicted by the Colorado Data Power-trendline. Taken from The Reference Reach Field Book, 2005 by Rosgen and Silvey

| D       | 200(227.00                      | Location: Polk Co                                                                                                    |
|---------|---------------------------------|----------------------------------------------------------------------------------------------------------------------|
|         | : 2006237.00<br>: Little White  |                                                                                                                      |
|         | : 1/19/2007                     | Observers: EMP TMB                                                                                                   |
| Value   | Variable                        | Definition                                                                                                           |
| Faile   | 17 Dividuental Dividuent Print  | Required Information for Entrainment Analysis                                                                        |
| 4.25    | D <sub>50</sub> (mm)            | D <sub>50</sub> from Riffle or Pavement <sup>#</sup> <sup>#</sup> Choose one                                         |
| 0.1     | $D_{50}$ (mm)                   | D <sub>50</sub> from Bar Sample or Subpavement <sup>#</sup>                                                          |
| 21      | D <sub>i</sub> (mm)             | Largest Particle from Bar Sample or Pavement <sup>#</sup>                                                            |
| 0.069   | D <sub>i</sub> (ft)             | Di (mm) / 304.8 (mm/ft)                                                                                              |
| 0.00149 | S (ft/ft)                       | Bankfull Water Surface Slope                                                                                         |
| 2.8     | d (ft)                          | Bankfull Mean Depth                                                                                                  |
| 100     | A $(ft^2)$                      | Bankfull Cross Sectional Area                                                                                        |
| 41.2    | W <sub>p</sub> (ft)             | Wetted Perimeter                                                                                                     |
| 1.65    | $\gamma_{s}$                    | Submerged Specific Weight of Sediment (1.65)                                                                         |
| 62.4    | $\gamma$ (lbs/ft <sup>3</sup> ) | Density of Water (62.4)                                                                                              |
|         | (                               | Calculation of Critical Dimensionless Shear Stress                                                                   |
| 42.50   | $D_{50}/\hat{D_{50}}$           | Range 3-7 Use Equation 1:                                                                                            |
|         |                                 | $\tau_{ci}^{*} = 0.0834 (D_{50}/D_{50}^{*})^{-0.872}$                                                                |
| 4.94    | $D_i/D_{50}$                    | Range 1.3-3.0 Use Equation 2:                                                                                        |
|         |                                 | $\tau_{ci}^{*} = 0.0384(D_{i}/D_{50})^{-0.887}$                                                                      |
| N/A     | τ <sup>*</sup> <sub>ci</sub>    | Critical Dimensionless Shear Stress Equation Used: N/A                                                               |
| C       | aculate Bank                    | full Mean Depth Required for Entrainment of Largest Particle                                                         |
| N/A     | dr                              | Required Bankfull Mean Depth (ft)                                                                                    |
| - 1/    | -1                              | •                                                                                                                    |
|         |                                 | $d_r = \frac{\tau_{ci}^* \gamma_s D_i}{S}$                                                                           |
| N/A     | d/d <sub>r</sub>                | Stability: N/A                                                                                                       |
| Calcul  | late Bankfull                   | Water Surface Slope Required for Entrainment of Largest Particle                                                     |
| N/A     | Sr                              | Required Bankfull Water Surface Slope (ft/ft)                                                                        |
|         |                                 | $S_{t} = \frac{\tau_{ci}^{*}\gamma_{s}D_{i}}{d}$                                                                     |
| NT / A  | S/S <sub>r</sub>                |                                                                                                                      |
| N/A     |                                 |                                                                                                                      |
| 2.43    | R                               | diment Transport Validation - Bankfull Shear Stress<br>Hydraulic Radius (ft)                                         |
| 2.43    |                                 | $R = A/W_p$                                                                                                          |
| 0.226   | 7                               | Bankfull Shear Stress $(lb/ft^2)$                                                                                    |
| 0.220   | τ <sub>c</sub>                  | $\tau_c = \gamma RS$                                                                                                 |
| N       |                                 |                                                                                                                      |
| IN      | Y or N                          | Is the Bed Material Homogeneous?<br>Determine from reach wide pebble count distribution. If homogeneous use "Leopold |
|         |                                 | et al" Curve Data, if heterogeneous use "Colorado" Curve Data.                                                       |
|         | <b>.</b>                        | Movable Particle Size (mm) At Bankfull Shear Stress                                                                  |
| N/A     | mm                              | predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                     |
| NT / A  | 11 / C <sup>2*</sup>            | Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move $D_i$                                                 |
| N/A     | lb/ft <sup>2*</sup>             | predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                     |
|         |                                 | Movable Particle Size (mm) At Bankfull Shear Stress                                                                  |
| 51      | mm*                             | predicted by the Colorado Data Power-trendline.                                                                      |
|         | ~                               | Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move $D_i$                                                 |
| 0.068   | lb/ft <sup>2*</sup>             | predicted by the Colorado Data Power-trendline.                                                                      |
|         | *Taken from                     | The Reference Reach Field Book, 2005 by Rosgen and Silvey                                                            |
|         |                                 | , , , , , , , , , , , , , , , , , , , ,                                                                              |

| р. : , ,    | 200(227.00                       |                                                                                                                                       |
|-------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| · · · · · · | :: 2006237.00<br>:: Little White |                                                                                                                                       |
|             | : 12/4/2006                      | Observers: EMP TMB                                                                                                                    |
| Value       | Variable                         | Definition                                                                                                                            |
| value       |                                  | Required Information for Entrainment Analysis                                                                                         |
| 4.25        | D <sub>50</sub> (mm)             | D <sub>50</sub> from Riffle or Pavement <sup>#</sup> <sup>#</sup> Choose one                                                          |
| 0.1         | D <sub>50</sub> (mm)             | D <sub>50</sub> from Bar Sample or Subpavement <sup>#</sup>                                                                           |
| 21          | $D_i$ (mm)                       | Largest Particle from Bar Sample or Pavement <sup>#</sup>                                                                             |
| 0.069       | D <sub>i</sub> (ft)              | Di (mm) / 304.8 (mm/ft)                                                                                                               |
| 0.0016      | S (ft/ft)                        | Bankfull Water Surface Slope                                                                                                          |
| 3           | d (ft)                           | Bankfull Mean Depth                                                                                                                   |
| 105         | A $(ft^2)$                       | Bankfull Cross Sectional Area                                                                                                         |
| 40.7        | W <sub>p</sub> (ft)              | Wetted Perimeter                                                                                                                      |
| 1.65        | γs                               | Submerged Specific Weight of Sediment (1.65)                                                                                          |
| 62.4        | $\gamma$ (lbs/ft <sup>3</sup> )  | Density of Water (62.4)                                                                                                               |
|             | (                                | Calculation of Critical Dimensionless Shear Stress                                                                                    |
| 42.50       | $D_{50}/\hat{D_{50}}$            | Range 3-7 Use Equation 1:                                                                                                             |
|             |                                  | $\tau_{ci}^{*} = 0.0834 (D_{50}/D_{50})^{-0.872}$                                                                                     |
| 4.94        | $D_i/D_{50}$                     | Range 1.3-3.0 Use Equation 2:                                                                                                         |
|             | 1 50                             | $\tau_{ci}^{*} = 0.0384(D_{i}/D_{50})^{-0.887}$                                                                                       |
| N/A         | τ <sup>*</sup> <sub>ci</sub>     | Critical Dimensionless Shear Stress Equation Used: N/A                                                                                |
|             |                                  | dull Mean Depth Required for Entrainment of Largest Particle                                                                          |
| N/A         | d <sub>r</sub>                   | Required Bankfull Mean Depth (ft)                                                                                                     |
| 14/11       |                                  |                                                                                                                                       |
|             |                                  | $d_r = \frac{\tau_{ci}^* \gamma_s D_i}{S}$                                                                                            |
| N/A         | d/d <sub>r</sub>                 | Stability: N/A                                                                                                                        |
| Calcu       | late Bankfull                    | Water Surface Slope Required for Entrainment of Largest Particle                                                                      |
| N/A         | Sr                               | Required Bankfull Water Surface Slope (ft/ft)                                                                                         |
|             |                                  | $S_{r} = \frac{\tau_{ci}^{*} \gamma_{s} D_{i}}{d}$                                                                                    |
|             |                                  | u                                                                                                                                     |
| N/A         | S/S <sub>r</sub>                 | Stability: N/A                                                                                                                        |
|             |                                  | diment Transport Validation - Bankfull Shear Stress                                                                                   |
| 2.58        | R                                | Hydraulic Radius (ft)<br>$R = A/W_{p}$                                                                                                |
|             |                                  | P                                                                                                                                     |
| 0.258       | τ <sub>c</sub>                   | Bankfull Shear Stress (lb/ft <sup>2</sup> )                                                                                           |
|             | a la                             | $\tau_c = \gamma RS$                                                                                                                  |
| N           | Y or N                           | Is the Bed Material Homogeneous?<br>Determine from reach wide pebble count distribution. If homogeneous use "Leopold                  |
|             |                                  | et al" Curve Data, if heterogeneous use "Colorado" Curve Data.                                                                        |
|             |                                  | Morrable Particle Size (mm) At Baskfull Shear Stress                                                                                  |
| N/A         | mm*                              | Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.               |
|             |                                  | Predicted Synth Ecopoliti, woman, et timer Por Power dentance<br>Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move $D_i$ |
| N/A         | lb/ft <sup>2*</sup>              | predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                                      |
|             | -                                |                                                                                                                                       |
| 56          | mm                               | Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Colorado Data Power-trendline.                                   |
|             |                                  | Predicted Shear Stress $(lbs/ft^2)$ Required To Move $D_i$                                                                            |
| 0.068       | lb/ft <sup>2*</sup>              | predicted by the Colorado Data Power-trendline.                                                                                       |
|             | *<br>Taken from                  | The Reference Reach Field Book, 2005 by Rosgen and Silvey                                                                             |
|             |                                  |                                                                                                                                       |

٠

|        | 2006237.00                                                                                                      | Location: Polk Co                                                                                                                                                                      |
|--------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Little White                                                                                                    | Oak Creek Reach: Proposed R2 Lower (iteration 2) Observers: EMP TMB                                                                                                                    |
|        | 12/4/2006                                                                                                       |                                                                                                                                                                                        |
| Value  | Variable                                                                                                        | Definition<br>Required Information for Entrainment Analysis                                                                                                                            |
| 4.05   | The second se | $D_{50}$ from Riffle or Pavement <sup>#</sup> <sup>#</sup> Choose o                                                                                                                    |
| 4.25   | $D_{50}$ (mm)                                                                                                   | _ 30                                                                                                                                                                                   |
| 0.1    | $D_{50} (mm)$                                                                                                   | $D_{50}$ from Bar Sample or Subpavement <sup>#</sup>                                                                                                                                   |
| 21     | D <sub>i</sub> (mm)                                                                                             | Largest Particle from Bar Sample or Pavement <sup>#</sup>                                                                                                                              |
| 0.069  | $D_i$ (ft)                                                                                                      | Di (mm) / 304.8 (mm/ft)                                                                                                                                                                |
| 0.0016 | S (ft/ft)                                                                                                       | Bankfull Water Surface Slope                                                                                                                                                           |
| 2.8    | d (ft)                                                                                                          | Bankfull Mean Depth                                                                                                                                                                    |
| 100    | A $(ft^2)$                                                                                                      | Bankfull Cross Sectional Area<br>Wetted Perimeter                                                                                                                                      |
| 41     | $W_{p}$ (ft)                                                                                                    |                                                                                                                                                                                        |
| 1.65   | $\gamma_s$                                                                                                      | Submerged Specific Weight of Sediment (1.65)                                                                                                                                           |
| 62.4   | $\gamma (lbs/ft^3)$                                                                                             | Density of Water (62.4)                                                                                                                                                                |
|        |                                                                                                                 | Calculation of Critical Dimensionless Shear Stress                                                                                                                                     |
| 42.50  | $D_{50}/\hat{D_{50}}$                                                                                           | Range 3-7 Use Equation 1:                                                                                                                                                              |
|        |                                                                                                                 | $\tau^{*}_{\ ci} = 0.0834 (D_{50}/\hat{D_{50}})^{-0.872}$                                                                                                                              |
| 4.94   | $D_i/D_{50}$                                                                                                    | Range 1.3-3.0 Use Equation 2:                                                                                                                                                          |
|        |                                                                                                                 | $	au^*_{\ ci} = 0.0384 (D_i/D_{50})^{-0.887}$                                                                                                                                          |
| N/A    | τ <sup>*</sup> <sub>ci</sub>                                                                                    | Critical Dimensionless Shear Stress Equation Used: N/A                                                                                                                                 |
| Ca     | aculate Bank                                                                                                    | full Mean Depth Required for Entrainment of Largest Particle                                                                                                                           |
| N/A    | dr                                                                                                              | Required Bankfull Mean Depth (ft)                                                                                                                                                      |
|        | _                                                                                                               | $d_r = \frac{\tau_{ci}^* \gamma_s D_i}{S}$                                                                                                                                             |
| N/A    | d/d <sub>r</sub>                                                                                                | Stability: N/A                                                                                                                                                                         |
| Calcul | ate Bankfull                                                                                                    | Water Surface Slope Required for Entrainment of Largest Particle                                                                                                                       |
| N/A    | Sr                                                                                                              | Required Bankfull Water Surface Slope (ft/ft)                                                                                                                                          |
|        |                                                                                                                 | $S_r = \frac{\tau_{ci}^* \gamma_s D_i}{d}$                                                                                                                                             |
| N/A    | S/S <sub>r</sub>                                                                                                | Stability: N/A                                                                                                                                                                         |
|        | Sec                                                                                                             | diment Transport Validation - Bankfull Shear Stress                                                                                                                                    |
| 2.44   | R                                                                                                               | Hydraulic Radius (ft)                                                                                                                                                                  |
|        | _                                                                                                               | $R = A/W_p$                                                                                                                                                                            |
| 0.244  | τ <sub>c</sub>                                                                                                  | Bankfull Shear Stress (lb/ft <sup>2</sup> )                                                                                                                                            |
|        |                                                                                                                 | $\tau_c = \gamma RS$                                                                                                                                                                   |
| N      | Y or N                                                                                                          | Is the Bed Material Homogeneous?<br>Determine from reach wide pebble count distribution. If homogeneous use "Leopold<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data. |
| N/A    | mm*                                                                                                             | Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                                |
| N/A    | lb/ft <sup>2*</sup>                                                                                             | Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub><br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                      |
| 54     | mm <sup>*</sup>                                                                                                 | Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Colorado Data Power-trendline.                                                                                    |
| 0.068  | lb/ft <sup>2*</sup>                                                                                             | Predicted Shear Stress ( $lbs/ft^2$ ) Required To Move D <sub>i</sub><br>predicted by the Colorado Data Power-trendline.                                                               |
|        | *Talaan faam 7                                                                                                  | The Reference Reach Field Book, 2005 by Rosgen and Silvey                                                                                                                              |

| Project      | : 2006237.00                    | Location: Polk County                                                                                                                              |
|--------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Stream       | : Little White                  | e Oak Creek Reach: R2A XS #3 (Existing)                                                                                                            |
| Date         | : 12/4/2006                     | Observers: EMP TMB                                                                                                                                 |
| Value        | Variable                        | Definition                                                                                                                                         |
|              | 1                               | Required Information for Entrainment Analysis D <sub>50</sub> from Riffle or Pavement <sup>#</sup> <sup>#</sup> Choose one                         |
| 20.68        | D <sub>50</sub> (mm)            | _ 30                                                                                                                                               |
| 0.1          | D <sub>50</sub> (mm)            | D <sub>50</sub> from Bar Sample or Subpavement <sup>#</sup>                                                                                        |
| 55           | D <sub>i</sub> (mm)             | Largest Particle from Bar Sample or Pavement <sup>#</sup>                                                                                          |
| 0.180        | $D_i$ (ft)                      | Di (mm) / 304.8 (mm/ft)                                                                                                                            |
| 0.01069      | S (ft/ft)                       | Bankfull Water Surface Slope                                                                                                                       |
| 1.5          | d (ft)                          | Bankfull Mean Depth                                                                                                                                |
| 16.78        | $A (ft^2)$                      | Bankfull Cross Sectional Area                                                                                                                      |
| 13.16        | $W_{p}$ (ft)                    | Wetted Perimeter                                                                                                                                   |
| 1.65         | $\gamma_s$                      | Submerged Specific Weight of Sediment (1.65)                                                                                                       |
| 62.4         | $\gamma$ (lbs/ft <sup>3</sup> ) | Density of Water (62.4)                                                                                                                            |
|              |                                 | Calculation of Critical Dimensionless Shear Stress                                                                                                 |
| 206.80       | $D_{50}/\hat{D_{50}}$           | Range 3-7 Use Equation 1:                                                                                                                          |
|              | _                               | $\tau^*_{ci} = 0.0834 (D_{50} / \hat{D}_{50})^{-0.872}$                                                                                            |
| 2.66         | $D_i/D_{50}$                    | Range 1.3-3.0 Use Equation 2:                                                                                                                      |
|              | _                               | $\tau^*_{ci} = 0.0384 (D_i/D_{50})^{-0.887}$                                                                                                       |
| 0.016        | τ <sup>*</sup> <sub>ci</sub>    | Critical Dimensionless Shear Stress Equation Used: 2                                                                                               |
| Cá           | culate Bank                     | cfull Mean Depth Required for Entrainment of Largest Particle                                                                                      |
| 0.449        | d <sub>r</sub>                  | Required Bankfull Mean Depth (ft)                                                                                                                  |
|              |                                 | $\mathbf{d}_{\mathbf{r}} = \frac{\tau_{\mathbf{ci}}^* \gamma_{\mathbf{s}} \mathbf{D}_{\mathbf{i}}}{\mathbf{S}}$                                    |
| 3.340        | d/d <sub>r</sub>                | Stability: Degrading                                                                                                                               |
|              |                                 | Water Surface Slope Required for Entrainment of Largest Particle                                                                                   |
| 0.003        | Sr                              | Required Bankfull Water Surface Slope (ft/ft)                                                                                                      |
|              |                                 | $S_r = \frac{\tau_{ci}^* \gamma_s D_i}{d}$                                                                                                         |
| 3.340        | S/S <sub>r</sub>                | Stability: Degrading                                                                                                                               |
|              | Sec                             | diment Transport Validation - Bankfull Shear Stress                                                                                                |
| 1.28         | R                               | Hydraulic Radius (ft)                                                                                                                              |
|              |                                 | $R = A/W_p$                                                                                                                                        |
| 0.851        | τ <sub>c</sub>                  | Bankfull Shear Stress (lb/ft <sup>2</sup> )                                                                                                        |
|              |                                 | $\tau_c = \gamma RS$                                                                                                                               |
| N            | Y or N                          | Is the Bed Material Homogeneous?                                                                                                                   |
|              |                                 | Determine from reach wide pebble count distribution. If homogeneous use "Leopold<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data. |
| N/A          | ×                               | Movable Particle Size (mm) At Bankfull Shear Stress                                                                                                |
| IN/A         | mm                              | predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                                                   |
| N/A          | lb/ft <sup>2*</sup>             | Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub>                                                                      |
|              |                                 | predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                                                   |
|              |                                 |                                                                                                                                                    |
| 105          | *                               | Movable Particle Size (mm) At Bankfull Shear Stress                                                                                                |
| 135          | mm*                             | Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Colorado Data Power-trendline.                                             |
|              | _                               |                                                                                                                                                    |
| 135<br>0.251 | lb/ft <sup>2*</sup>             | predicted by the Colorado Data Power-trendline.                                                                                                    |

#### Location: Polk County Project: 2006237.00 Stream: Little White Oak Creek Reach: R2A XS #3 Proposed (Actual Designed Slope) Observers: EMP TMB Date: 1/19/2007 Definition Value Variable **Required Information for Entrainment Analysis** Choose one D<sub>50</sub> from Riffle or Pavement<sup>#</sup> 20.68 D<sub>50</sub> (mm) 0.1 $D_{50}$ (mm) D<sub>50</sub> from Bar Sample or Subpavement# Largest Particle from Bar Sample or Pavement# D<sub>i</sub> (mm) 55 0.180 D<sub>i</sub> (ft) Di (mm) / 304.8 (mm/ft) Bankfull Water Surface Slope 0.011 S (ft/ft) 0.94 Bankfull Mean Depth d (ft) Bankfull Cross Sectional Area $A (ft^2)$ 11 Wp (ft) Wetted Perimeter 13.6 Submerged Specific Weight of Sediment (1.65) 1.65 Ys 62.4 $\gamma (lbs/ft)$ Density of Water (62.4) Calculation of Critical Dimensionless Shear Stress 206.80 $D_{50}/D_{50}$ Range 3-7 Use Equation 1: $\tau_{ci}^{*} = 0.0834 (D_{50}/\hat{D_{50}})^{-0.872}$ $D_i/D_{50}$ Use Equation 2: Range 1.3-3.0 2.66 $\tau_{ci}^{*} = 0.0384 (D_i/D_{50})^{-0.887}$ Critical Dimensionless Shear Stress Equation Used: 2 $\tau_{ci}$ 0.016 Caculate Bankfull Mean Depth Required for Entrainment of Largest Particle Required Bankfull Mean Depth (ft) 0.436 d, $d_r = \frac{\tau_{ci}^* \gamma_s D_i}{S}$ 2.154 $d/d_r$ Stability: Degrading Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle Required Bankfull Water Surface Slope (ft/ft) 0.005 S, $S_r = \frac{\tau_{ci}^* \gamma_s D_i}{d}$ 2.154 S/S, Stability: Degrading Sediment Transport Validation - Bankfull Shear Stress Hydraulic Radius (ft) R 0.81 R =A/W<sub>p</sub> Bankfull Shear Stress (lb/ft<sup>2</sup>) 0.555 $\tau_c =$ γRS N Y or N Is the Bed Material Homogeneous? Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data. Movable Particle Size (mm) At Bankfull Shear Stress N/A mm predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> N/A lb/ft<sup>2\*</sup> predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Movable Particle Size (mm) At Bankfull Shear Stress 99 mm predicted by the Colorado Data Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> lb/ft<sup>2\*</sup> 0.251 predicted by the Colorado Data Power-trendline. Taken from The Reference Reach Field Book, 2005 by Rosgen and Silvey

| Project | : 2006237.00                    | Location: Polk County                                                                                                                              |
|---------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Stream  | : Little White                  | e Oak Creek Reach: R2A XS #3 Proposed (iteration 1)                                                                                                |
| Date    | : 12/5/2006                     | Observers: EMP TMB                                                                                                                                 |
| Value   | Variable                        | Definition                                                                                                                                         |
|         |                                 | Required Information for Entrainment Analysis                                                                                                      |
| 20.68   | D <sub>50</sub> (mm)            | $D_{50}$ from Riffle or Pavement <sup>#</sup> <sup>#</sup> Choose or                                                                               |
| 0.1     | D <sub>50</sub> (mm)            | D <sub>50</sub> from Bar Sample or Subpavement <sup>#</sup>                                                                                        |
| 55      | $D_i$ (mm)                      | Largest Particle from Bar Sample or Pavement <sup>#</sup>                                                                                          |
| 0.180   | D <sub>i</sub> (ft)             | Di (mm) / 304.8 (mm/ft)                                                                                                                            |
| 0.0107  | S (ft/ft)                       | Bankfull Water Surface Slope                                                                                                                       |
| 1.1     | d (ft)                          | Bankfull Mean Depth                                                                                                                                |
| 14      | A $(ft^2)$                      | Bankfull Cross Sectional Area                                                                                                                      |
| 14.9    | $W_{p}$ (ft)                    | Wetted Perimeter                                                                                                                                   |
| 1.65    | γs                              | Submerged Specific Weight of Sediment (1.65)                                                                                                       |
| 62.4    | $\gamma$ (lbs/ft <sup>3</sup> ) | Density of Water (62.4)                                                                                                                            |
|         |                                 | Calculation of Critical Dimensionless Shear Stress                                                                                                 |
| 206.80  | $D_{50}/\hat{D_{50}}$           | Range 3-7 Use Equation 1:                                                                                                                          |
| 5       |                                 | $\tau^*_{ci} = 0.0834 (D_{50}/\hat{D_{50}})^{-0.872}$                                                                                              |
| 2.66    | $D_i/D_{50}$                    | Range 1.3-3.0 Use Equation 2:                                                                                                                      |
|         |                                 | $\tau^*_{ci} = 0.0384 (D_i / D_{50})^{-0.887}$                                                                                                     |
| 0.016   | τ <sup>*</sup> <sub>ci</sub>    | Critical Dimensionless Shear Stress Equation Used: 2                                                                                               |
| С       | aculate Banl                    | kfull Mean Depth Required for Entrainment of Largest Particle                                                                                      |
| 0.449   | dr                              | Required Bankfull Mean Depth (ft)                                                                                                                  |
|         |                                 | $d_r = \frac{\tau_{ci}^* \gamma_s D_i}{S}$                                                                                                         |
| 2.451   | d/d <sub>r</sub>                | Stability: Degrading                                                                                                                               |
| Calcu   | late Bankful                    | Il Water Surface Slope Required for Entrainment of Largest Particle                                                                                |
| 0.004   | Sr                              | Required Bankfull Water Surface Slope (ft/ft)                                                                                                      |
|         |                                 | $S_{r} = \frac{\tau_{ci}^{*} \gamma_{s} D_{i}}{d}$                                                                                                 |
| 2.451   | S/S <sub>r</sub>                | Stability: Degrading                                                                                                                               |
|         | Se                              | diment Transport Validation - Bankfull Shear Stress                                                                                                |
| 0.94    | R                               | Hydraulic Radius (ft)                                                                                                                              |
|         |                                 | $R = A/W_p$                                                                                                                                        |
| 0.627   | τ <sub>c</sub>                  | Bankfull Shear Stress (lb/ft <sup>2</sup> )                                                                                                        |
|         |                                 | $\tau_c = \gamma RS$                                                                                                                               |
| N       | Y or N                          | Is the Bed Material Homogeneous?                                                                                                                   |
|         |                                 | Determine from reach wide pebble count distribution. If homogeneous use "Leopold<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data. |
|         |                                 | Movable Particle Size (mm) At Bankfull Shear Stress                                                                                                |
| N/A     | mm                              | predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                                                   |
| NT/A    | 11. / 0.2*                      | Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub>                                                                      |
| N/A     | lb/ft <sup>2*</sup>             | predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                                                   |
| 100     |                                 | Movable Particle Size (mm) At Bankfull Shear Stress                                                                                                |
| 108     | mm                              | predicted by the Colorado Data Power-trendline.                                                                                                    |
| 0.251   | 11 / C.2*                       | Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub>                                                                      |
| 0.251   | lb/ft <sup>2*</sup>             | predicted by the Colorado Data Power-trendline.                                                                                                    |
|         | *                               | The Reference Reach Field Book, 2005 by Rosgen and Silvey                                                                                          |

#### Project: 2006237.00 Location: Polk County Stream: Little White Oak Creek Reach: R2A XS #3 Proposed (iteration 2) Date: 12/5/2006 Observers: EMP TMB Definition Value Variable **Required Information for Entrainment Analysis** <sup>#</sup> Choose one 20.68 D<sub>50</sub> from Riffle or Pavement<sup>#</sup> $D_{50}$ (mm) 0.1 D<sub>50</sub> (mm) D<sub>50</sub> from Bar Sample or Subpavement<sup>#</sup> Largest Particle from Bar Sample or Pavement# 55 $D_i$ (mm) D<sub>i</sub> (ft) Di (mm) / 304.8 (mm/ft) 0.180 0.0107 S (ft/ft) Bankfull Water Surface Slope Bankfull Mean Depth 1.1 d (ft) A $(ft^2)$ Bankfull Cross Sectional Area 14 W<sub>p</sub> (ft) 15.4 Wetted Perimeter 1.65 Submerged Specific Weight of Sediment (1.65) Ys 62.4 $\gamma (lbs/ft^3)$ Density of Water (62.4) Calculation of Critical Dimensionless Shear Stress 206.80 $D_{50}/D_{50}$ Range 3-7 Use Equation 1: $\tau_{ci}^{*} = 0.0834 (D_{50}/\hat{D_{50}})^{-0.872}$ Use Equation 2: $D_i/D_{50}$ Range 1.3-3.0 2.66 $\tau^*_{ci} = 0.0384 (D_i / \hat{D_{50}})^{-0.887}$ τ ... Critical Dimensionless Shear Stress Equation Used: 2 0.016 Caculate Bankfull Mean Depth Required for Entrainment of Largest Particle Required Bankfull Mean Depth (ft) 0.449 d, $d_r = \frac{\tau_{ci}^* \gamma_s D_i}{S}$ 2.451 d/d, Stability: Degrading Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle Required Bankfull Water Surface Slope (ft/ft) 0.004 S. $S_r = \frac{\tau_{ci}^* \gamma_s D_i}{d}$ 2.451 S/S, Stability: Degrading Sediment Transport Validation - Bankfull Shear Stress 0.91 R Hydraulic Radius (ft) A/W<sub>p</sub> R =Bankfull Shear Stress (lb/ft<sup>2</sup>) 0.607 yRS $\tau_c =$ N Y or N Is the Bed Material Homogeneous? Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data. Movable Particle Size (mm) At Bankfull Shear Stress N/A mm predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> N/A lb/ft<sup>2\*</sup> predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Movable Particle Size (mm) At Bankfull Shear Stress 105 mm predicted by the Colorado Data Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> lb/ft<sup>2\*</sup> 0.251 predicted by the Colorado Data Power-trendline. Taken from The Reference Reach Field Book, 2005 by Rosgen and Silvey

#### Project: 2006237.00 Location: Polk County Stream: Little White Oak Creek Reach: R2A XS #3 Proposed (iteration 3) Observers: EMP TMB Date: 12/5/2006 Value Variable Definition **Required Information for Entrainment Analysis** Choose one D<sub>50</sub> (mm) D<sub>50</sub> from Riffle or Pavement<sup>#</sup> 20.68 D<sub>50</sub> (mm) $D_{50}$ from Bar Sample or Subpavement<sup>#</sup> 0.1 Largest Particle from Bar Sample or Pavement# 55 D<sub>i</sub> (mm) 0.180 D<sub>i</sub> (ft) Di (mm) / 304.8 (mm/ft) 0.0107 S (ft/ft) Bankfull Water Surface Slope 0.9 d (ft) Bankfull Mean Depth A $(ft^2)$ 11 Bankfull Cross Sectional Area W<sub>p</sub> (ft) 13.5 Wetted Perimeter Submerged Specific Weight of Sediment (1.65) 1.65 γs $\gamma (lbs/ft^3)$ Density of Water (62.4) 62.4 **Calculation of Critical Dimensionless Shear Stress** Use Equation 1: $D_{50}/D_{50}$ 206.80 Range 3-7 $\tau^*_{ci} = 0.0834 (D_{50}/\hat{D_{50}})^{-0.872}$ Use Equation 2: $D_i/D_{50}$ Range 1.3-3.0 2.66 $\tau^*_{ci} = 0.0384 (D_i / \hat{D_{50}})^{-0.887}$ τ Critical Dimensionless Shear Stress Equation Used: 2 0.016 Caculate Bankfull Mean Depth Required for Entrainment of Largest Particle Required Bankfull Mean Depth (ft) 0.449 d, $d_r = \frac{\tau_{ci}^* \gamma_s D_i}{S}$ d/d, Stability: Degrading 2.006 Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle Required Bankfull Water Surface Slope (ft/ft) 0.005 S. $S_r = \frac{\tau_{ci}^* \gamma_s D_i}{d}$ 2.006 S/S, Stability: Degrading Sediment Transport Validation - Bankfull Shear Stress 0.81 R Hydraulic Radius (ft) A/Wn R =Bankfull Shear Stress (lb/ft<sup>2</sup>) 0.544 yRS $\tau_{c} =$ N Y or N Is the Bed Material Homogeneous? Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data. Movable Particle Size (mm) At Bankfull Shear Stress N/A mm predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> N/A lb/ft<sup>2\*</sup> predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Movable Particle Size (mm) At Bankfull Shear Stress 97 mm predicted by the Colorado Data Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> 0.251 lb/ft<sup>2\*</sup> predicted by the Colorado Data Power-trendline. Taken from The Reference Reach Field Book, 2005 by Rosgen and Silvey

| Project | : 2006237.00                    |                                                                                                                                                    |     |
|---------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|         | : Little White                  |                                                                                                                                                    |     |
| Date    | : 12/4/2006                     | Observers: EMP TMB                                                                                                                                 |     |
| Value   | Variable                        |                                                                                                                                                    |     |
|         | -                               | Required Information for Entrainment Analysis                                                                                                      |     |
| 24.98   | D <sub>50</sub> (mm)            | D <sub>50</sub> from Riffle or Pavement" Choose                                                                                                    | one |
| 4.86    | D <sub>50</sub> (mm)            | D <sub>50</sub> from Bar Sample or Subpavement <sup>#</sup>                                                                                        |     |
| 70      | D <sub>i</sub> (mm)             | Largest Particle from Bar Sample or Pavement <sup>#</sup>                                                                                          |     |
| 0.230   | $D_{i}$ (ft)                    | Di (mm) / 304.8 (mm/ft)                                                                                                                            |     |
| 0.01443 | S (ft/ft)                       | Bankfull Water Surface Slope                                                                                                                       |     |
| 1.31    | d (ft)                          | Bankfull Mean Depth                                                                                                                                |     |
| 5.92    | A $(ft^2)$                      | Bankfull Cross Sectional Area                                                                                                                      |     |
| 6.36    | $W_{p}$ (ft)                    | Wetted Perimeter                                                                                                                                   |     |
| 1.65    | Ύs                              | Submerged Specific Weight of Sediment (1.65)                                                                                                       |     |
| 62.4    | $\gamma$ (lbs/ft <sup>3</sup> ) | Density of Water (62.4)                                                                                                                            |     |
|         | (                               | Calculation of Critical Dimensionless Shear Stress                                                                                                 |     |
| 5.14    | $D_{50}/\hat{D_{50}}$           | Range 3-7 Use Equation 1:                                                                                                                          |     |
|         | 27.34                           | $\tau^*_{ci} = 0.0834 (D_{50}/\hat{D_{50}})^{-0.872}$                                                                                              |     |
| 2.80    | $D_i/D_{50}$                    | Range 1.3-3.0 Use Equation 2:                                                                                                                      |     |
|         |                                 | $	au^*_{ci} = 0.0384 (D_i/D_{50}^{-0.887})$                                                                                                        |     |
| 0.020   | τ <sup>*</sup> <sub>ci</sub>    | Critical Dimensionless Shear Stress Equation Used: 1                                                                                               |     |
|         |                                 | kfull Mean Depth Required for Entrainment of Largest Particle                                                                                      |     |
| 0.525   | dr                              | Required Bankfull Mean Depth (ft)                                                                                                                  |     |
| 0.525   | <sup>u</sup> r                  |                                                                                                                                                    |     |
|         |                                 | $d_r = \frac{\tau_{ci}\gamma_s D_i}{S}$                                                                                                            |     |
| 2.493   | d/d <sub>r</sub>                | Stability: Degrading                                                                                                                               |     |
| Calcu   | late Bankfull                   | ll Water Surface Slope Required for Entrainment of Largest Particle                                                                                |     |
| 0.006   | Sr                              | Required Bankfull Water Surface Slope (ft/ft)                                                                                                      |     |
|         |                                 | $S_r = \frac{\tau_{ci}^2 \gamma_s D_i}{d}$                                                                                                         |     |
| 2.493   | S/S <sub>r</sub>                | Stability: Degrading                                                                                                                               |     |
|         | Se                              | ediment Transport Validation - Bankfull Shear Stress                                                                                               |     |
| 0.93    | R                               | Hydraulic Radius (ft)                                                                                                                              |     |
|         |                                 | $R = A/W_p$                                                                                                                                        |     |
| 0.838   | τ <sub>c</sub>                  | Bankfull Shear Stress (lb/ft <sup>2</sup> )                                                                                                        |     |
|         |                                 | $\tau_c = \gamma RS$                                                                                                                               |     |
| N       | Y or N                          | Is the Bed Material Homogeneous?                                                                                                                   |     |
|         |                                 | Determine from reach wide pebble count distribution. If homogeneous use "Leopole<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data. | d   |
|         | x                               | Movable Particle Size (mm) At Bankfull Shear Stress                                                                                                |     |
| N/A     | mm                              | predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                                                   |     |
| N/A     | lb/ft <sup>2*</sup>             | Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub>                                                                      |     |
| 14/11   | 10/11                           | predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                                                   |     |
| 101     | *                               | Movable Particle Size (mm) At Bankfull Shear Stress                                                                                                |     |
| 134     | mm                              | predicted by the Colorado Data Power-trendline.                                                                                                    |     |
|         |                                 | Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub>                                                                      |     |
| 0.240   | 11 10.28                        |                                                                                                                                                    |     |
| 0.348   | lb/ft <sup>2*</sup>             | predicted by the Colorado Data Power-trendline.<br>a <i>The Reference Reach Field Book</i> , 2005 by Rosgen and Silvey                             |     |

| Project: 2006237.0                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stream: Little Whit                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Date: 1/19/2007                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Value Variable                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                            | Required Information for Entrainment Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 24.98 D <sub>50</sub> (mm)                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4.86 D <sup>^</sup> <sub>50</sub> (mm)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>70</b> D <sub>i</sub> (mm)                              | Largest Particle from Bar Sample or Pavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.230 D <sub>i</sub> (ft)                                  | Di (mm) / 304.8 (mm/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.01142 S (ft/ft)                                          | Bankfull Water Surface Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.63 d (ft)                                                | Bankfull Mean Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5 A $(ft^2)$                                               | Bankfull Cross Sectional Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9.26 W <sub>p</sub> (ft)                                   | Wetted Perimeter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>1.65</b> γ <sub>s</sub>                                 | Submerged Specific Weight of Sediment (1.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 62.4 $\gamma (lbs/ft^3)$                                   | Density of Water (62.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                            | Calculation of Critical Dimensionless Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5.14 D <sub>50</sub> /D <sup>^</sup> <sub>50</sub>         | Range 3-7 Use Equation 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                            | $\tau_{ci}^* = 0.0834 (D_{50}/D_{50})^{-0.872}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.80 D <sub>i</sub> /D <sub>50</sub>                       | Range 1.3-3.0 Use Equation 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.00                                                       | $\tau_{\rm ci}^* = 0.0384 (D_i/D_{50})^{-0.867}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.020 τ <sup>*</sup> <sub>ci</sub>                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Caculate Bank                                              | full Mean Depth Required for Entrainment of Largest Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.664 d <sub>r</sub>                                       | Required Bankfull Mean Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                            | $d_r = \frac{\tau_{ci}^2 \gamma_s D_i}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.949 d/d <sub>r</sub>                                     | Stability: Aggrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Calculate Bankfull                                         | Water Surface Slope Required for Entrainment of Largest Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.012 S <sub>r</sub>                                       | Required Bankfull Water Surface Slope (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                            | $S_r = \frac{\tau_{ci}^* \gamma_s D_i}{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                            | $S_r = \frac{d}{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.949 S/S <sub>r</sub>                                     | Stability: Aggrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sec                                                        | diment Transport Validation - Bankfull Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.54 R                                                     | Hydraulic Radius (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                            | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                            | $R = A/W_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.385 T-                                                   | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.385 τ <sub>c</sub>                                       | Bankfull Shear Stress (lb/ft <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                            | Bankfull Shear Stress (lb/ft <sup>2</sup> )<br>$\tau_c = \gamma RS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.385 τ <sub>c</sub><br>Ν Υ or N                           | Bankfull Shear Stress (lb/ft <sup>2</sup> )<br>$\tau_c = \gamma RS$<br>Is the Bed Material Homogeneous?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                            | Bankfull Shear Stress (lb/ft <sup>2</sup> )<br>$\tau_c = \gamma RS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| N Y or N                                                   | Bankfull Shear Stress $(lb/ft^2)$<br>$\tau_c = \gamma RS$<br>Is the Bed Material Homogeneous?<br>Determine from reach wide pebble count distribution. If homogeneous use "Leopold<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data.                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                            | Bankfull Shear Stress $(lb/ft^2)$<br>$\tau_c = \gamma RS$<br>Is the Bed Material Homogeneous?<br>Determine from reach wide pebble count distribution. If homogeneous use "Leopold<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data.<br>Movable Particle Size (mm) At Bankfull Shear Stress                                                                                                                                                                                                                                                                                                                                                               |
| N Y or N                                                   | Bankfull Shear Stress (lb/ft <sup>2</sup> )<br>$\tau_c = \gamma RS$<br>Is the Bed Material Homogeneous?<br>Determine from reach wide pebble count distribution. If homogeneous use "Leopold<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data.<br>Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                                                                                                                                                                                                                                                 |
| N Y or N                                                   | Bankfull Shear Stress (lb/ft <sup>2</sup> )<br>$\tau_c = \gamma RS$<br>Is the Bed Material Homogeneous?<br>Determine from reach wide pebble count distribution. If homogeneous use "Leopold<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data.<br>Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.<br>Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub>                                                                                                                                                                                                |
| N Y or N                                                   | Bankfull Shear Stress (lb/ft <sup>2</sup> )<br>$\tau_c = \gamma RS$<br>Is the Bed Material Homogeneous?<br>Determine from reach wide pebble count distribution. If homogeneous use "Leopold<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data.<br>Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                                                                                                                                                                                                                                                 |
| N Y or N<br>N/A mm <sup>*</sup><br>N/A lb/ft <sup>2*</sup> | Bankfull Shear Stress (lb/ft <sup>2</sup> )<br>$\tau_c = \gamma RS$<br>Is the Bed Material Homogeneous?<br>Determine from reach wide pebble count distribution. If homogeneous use "Leopold<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data.<br>Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.<br>Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub><br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.<br>Movable Particle Size (mm) At Bankfull Shear Stress                                                                     |
| N Y or N                                                   | Bankfull Shear Stress (lb/ft <sup>2</sup> )<br>$\tau_c = \gamma RS$<br>Is the Bed Material Homogeneous?<br>Determine from reach wide pebble count distribution. If homogeneous use "Leopold<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data.<br>Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.<br>Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub><br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.<br>Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. |
| N Y or N<br>N/A mm <sup>*</sup><br>N/A lb/ft <sup>2*</sup> | Bankfull Shear Stress (lb/ft <sup>2</sup> )<br>$\tau_c = \gamma RS$<br>Is the Bed Material Homogeneous?<br>Determine from reach wide pebble count distribution. If homogeneous use "Leopold<br>et al" Curve Data, if heterogeneous use "Colorado" Curve Data.<br>Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.<br>Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub><br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.<br>Movable Particle Size (mm) At Bankfull Shear Stress                                                                     |

|                                                                           |                                                                                                                                                                       | Oak Creek Reach: R2B XS# 1 Proposed (iteration 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                           | 12/4/2006                                                                                                                                                             | Observers: EMP TMB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Value                                                                     | Variable                                                                                                                                                              | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Value                                                                     |                                                                                                                                                                       | Required Information for Entrainment Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24.98                                                                     | D <sub>50</sub> (mm)                                                                                                                                                  | D <sub>50</sub> from Riffle or Pavement <sup>#</sup> <sup>#</sup> Choose one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4.86                                                                      | $\hat{D}_{50}$ (mm)                                                                                                                                                   | $D_{50}$ from Bar Sample or Subpavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 70                                                                        | $D_i$ (mm)                                                                                                                                                            | Largest Particle from Bar Sample or Pavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.230                                                                     | $D_i$ (ft)                                                                                                                                                            | Di (mm) / 304.8 (mm/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.012                                                                     | S (ft/ft)                                                                                                                                                             | Bankfull Water Surface Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.78                                                                      | d (ft)                                                                                                                                                                | Bankfull Mean Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7                                                                         | A $(ft^2)$                                                                                                                                                            | Bankfull Cross Sectional Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10.56                                                                     | $W_{p}$ (ft)                                                                                                                                                          | Wetted Perimeter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.65                                                                      | γs                                                                                                                                                                    | Submerged Specific Weight of Sediment (1.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 62.4                                                                      | $\gamma$ (lbs/ft <sup>3</sup> )                                                                                                                                       | Density of Water (62.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>CONTROL</b>                                                            | 0                                                                                                                                                                     | Calculation of Critical Dimensionless Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.14                                                                      | $D_{50}/\hat{D_{50}}$                                                                                                                                                 | Range 3-7 Use Equation 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                           |                                                                                                                                                                       | $\tau^{*}_{ci} = 0.0834 (D_{50}/D^{}_{50})^{-0.872}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.80                                                                      | $D_i/D_{50}$                                                                                                                                                          | Range 1.3-3.0 Use Equation 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                           |                                                                                                                                                                       | $\tau^*_{ci} = 0.0384 (D_i/D_{50})^{-0.887}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.020                                                                     | τ <sup>*</sup> <sub>ci</sub>                                                                                                                                          | Critical Dimensionless Shear Stress Equation Used: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C                                                                         | aculate Bank                                                                                                                                                          | full Mean Depth Required for Entrainment of Largest Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.632                                                                     | d <sub>r</sub>                                                                                                                                                        | Required Bankfull Mean Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                           |                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                           |                                                                                                                                                                       | $d_r = \frac{\tau_{ci} \gamma_s D_i}{S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.235                                                                     |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                           | d/d <sub>r</sub>                                                                                                                                                      | Stability: Degrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                           |                                                                                                                                                                       | Stability:     Degrading       Water Surface Slope Required for Entrainment of Largest Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                           |                                                                                                                                                                       | Water Surface Slope Required for Entrainment of Largest Particle<br>Required Bankfull Water Surface Slope (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Calcu                                                                     | late Bankfull                                                                                                                                                         | Water Surface Slope Required for Entrainment of Largest Particle<br>Required Bankfull Water Surface Slope (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Calcu<br>0.010                                                            | late Bankfull<br>S <sub>r</sub>                                                                                                                                       | Water Surface Slope Required for Entrainment of Largest Particle<br>Required Bankfull Water Surface Slope (ft/ft)<br>$S_{t} = \frac{\tau_{ci}^{*} \gamma_{s} D_{i}}{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Calcu                                                                     | late Bankfull<br>S <sub>r</sub><br>S/S <sub>r</sub>                                                                                                                   | Water Surface Slope Required for Entrainment of Largest Particle         Required Bankfull Water Surface Slope (ft/ft) $S_r = \frac{\tau_{ci}^* \gamma_s D_i}{d}$ Stability: Degrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Calcul<br>0.010<br>1.235                                                  | late Bankfull<br>Sr<br>S/Sr<br>S/Sr                                                                                                                                   | Water Surface Slope Required for Entrainment of Largest Particle         Required Bankfull Water Surface Slope (ft/ft) $\tau_{ci}^* \gamma_s D_i$ d         Stability: Degrading         diment Transport Validation - Bankfull Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Calcu<br>0.010                                                            | late Bankfull<br>S <sub>r</sub><br>S/S <sub>r</sub>                                                                                                                   | Water Surface Slope Required for Entrainment of Largest Particle         Required Bankfull Water Surface Slope (ft/ft) $S_r = -\frac{\tau_{cl}^* \gamma_s D_l}{d}$ Stability: Degrading         Diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Calcu<br>0.010<br>1.235<br>0.66                                           | late Bankfull<br>S <sub>r</sub><br>S/S <sub>r</sub><br>S/S<br>R                                                                                                       | Water Surface Slope Required for Entrainment of Largest Particle         Required Bankfull Water Surface Slope (ft/ft) $S_t = \underbrace{\tau_{cl} \gamma_s D_l}_{d}$ Stability: Degrading         Stability: Degrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft)         R = A/Wp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Calcul<br>0.010<br>1.235                                                  | late Bankfull<br>Sr<br>S/Sr<br>S/Sr                                                                                                                                   | Water Surface Slope Required for Entrainment of Largest Particle         Required Bankfull Water Surface Slope (ft/ft)         Sr = $\frac{\tau_{ci}^* \gamma_s D_i}{d}$ Stability: Degrading         Bankfull Shear Stress         Hydraulic Radius (ft)         R = $A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Calcui<br>0.010<br>1.235<br>0.66<br>0.496                                 | late Bankfull<br>S <sub>r</sub><br>S/S <sub>r</sub><br>S/S<br>R                                                                                                       | Water Surface Slope Required for Entrainment of Largest Particle         Required Bankfull Water Surface Slope (ft/ft) $S_t = \underbrace{\tau_{cl} \gamma_s D_l}_{d}$ Stability: Degrading         Stability: Degrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft)         R = A/Wp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Calcu<br>0.010<br>1.235<br>0.66                                           | late Bankfull<br>S <sub>r</sub><br>S/S <sub>r</sub><br>S/S<br>R                                                                                                       | Water Surface Slope Required for Entrainment of Largest Particle         Required Bankfull Water Surface Slope (ft/ft)         S <sub>t</sub> = $\frac{\tau^*_{c} \gamma_s D_i}{d}$ Stability: Degrading         Diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft)       R = $A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Calcui<br>0.010<br>1.235<br>0.66<br>0.496                                 | late Bankfull<br>$S_r$<br>$S/S_r$<br>$S/S_r$<br>Sec<br>R<br>$T_c$                                                                                                     | Water Surface Slope Required for Entrainment of Largest Particle         Required Bankfull Water Surface Slope (ft/ft)         S <sub>t</sub> = $\frac{\tau^*_{c} \gamma_s D_i}{d}$ Stability: Degrading         Diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft)       R = $A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Calcui<br>0.010<br>1.235<br>0.66<br>0.496                                 | late Bankfull<br>$S_r$<br>$S/S_r$<br>$S/S_r$<br>Sec<br>R<br>$T_c$                                                                                                     | Water Surface Slope Required for Entrainment of Largest Particle         Required Bankfull Water Surface Slope (ft/ft)         Srefactory of the second structure         Stability: Degrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft)         R =       A/Wp         Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c =$ $\gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Calcui<br>0.010<br>1.235<br>0.66<br>0.496                                 | late Bankfull<br>$S_r$<br>$S/S_r$<br>$S/S_r$<br>Sec<br>R<br>$T_c$                                                                                                     | Water Surface Slope Required for Entrainment of Largest Particle         Required Bankfull Water Surface Slope (ft/ft)         Srequired for Entrainment of Largest Particle         Required Bankfull Water Surface Slope (ft/ft)         Srequired for Entrainment of Largest Particle         Stability:         Degrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft)         R = A/Wp         Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.         Movable Particle Size (mm) At Bankfull Shear Stress                                                                                                                                                                                                                                                                                       |
| Calcu<br>0.010<br>1.235<br>0.66<br>0.496<br>N<br>N/A                      | late Bankfull<br>S <sub>r</sub><br>S/S <sub>r</sub><br>S/S <sub>r</sub><br>R<br>T <sub>c</sub><br>Y or N                                                              | Water Surface Slope Required for Entrainment of Largest Particle         Required Bankfull Water Surface Slope (ft/ft)         Sreface $\frac{\tau}{c} (\gamma_s D_i)$ A         Stability: Degrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft)         R = A/Wp         Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.         Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                                                                                                                                                                                                                                                                                                              |
| Calcu<br>0.010<br>1.235<br>0.66<br>0.496<br>N                             | late Bankfull<br>$S_r$<br>$S/S_r$<br>R<br>$T_c$<br>Y or N                                                                                                             | Water Surface Slope Required for Entrainment of Largest Particle         Required Bankfull Water Surface Slope (ft/ft)         Srequired for Entrainment of Largest Particle         Required Bankfull Water Surface Slope (ft/ft)         Srequired for Entrainment of Largest Particle         Stability:         Degrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft)         R = A/Wp         Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.         Movable Particle Size (mm) At Bankfull Shear Stress                                                                                                                                                                                                                                                                                       |
| Calcul<br>0.010<br>1.235<br>0.66<br>0.496<br>N<br>N/A<br>N/A              | late Bankfull<br>S <sub>r</sub><br>S/S <sub>r</sub><br>S/S <sub>r</sub><br>R<br>T <sub>c</sub><br>Y or N                                                              | Water Surface Slope Required for Entrainment of Largest ParticleRequired Bankfull Water Surface Slope (ft/ft) $S_r = \frac{\tau^*_{cl} \gamma_s D_i}{d}$ Stability: Degrading <b>diment Transport Validation - Bankfull Shear Stress</b> Hydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>3</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Predicted Shear Stress (lb/ft <sup>2</sup> ) Required To Move D <sub>i</sub> predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                                                                                                                                                                                                                                  |
| Calcu<br>0.010<br>1.235<br>0.66<br>0.496<br>N<br>N/A                      | late Bankfull<br>S <sub>r</sub><br>S/S <sub>r</sub><br>S/S <sub>r</sub><br>R<br>T <sub>c</sub><br>Y or N                                                              | Water Surface Slope Required for Entrainment of Largest ParticleRequired Bankfull Water Surface Slope (ft/ft) $S_r = \frac{\tau^*_{cl} \gamma_s D_i}{d}$ Stability: Degrading <b>diment Transport Validation - Bankfull Shear Stress</b> Hydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>3</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Predicted Shear Stress (lb/ft <sup>2</sup> ) Required To Move D <sub>i</sub> predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub> predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline. |
| Calcul<br>0.010<br>1.235<br>0.66<br>0.496<br>N<br>N/A<br>N/A<br>N/A<br>91 | late Bankfull<br>S <sub>r</sub><br>S/S <sub>r</sub><br>S/S <sub>r</sub><br>R<br>τ <sub>c</sub><br>Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup><br>mm <sup>*</sup> | Water Surface Slope Required for Entrainment of Largest ParticleRequired Bankfull Water Surface Slope (ft/ft) $S_t = \frac{\tau_{cl} \gamma_s D_l}{d}$ Stability: Degradingdiment Transport Validation - Bankfull Shear StressHydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D_i<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Movable Particle Size (mm) At Bankfull Shear Stress<br>predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                  |
| Calcul<br>0.010<br>1.235<br>0.66<br>0.496<br>N<br>N/A<br>N/A              | late Bankfull<br>$S_r$<br>$S/S_r$<br>R<br>$T_c$<br>Y or N<br>$mm^*$<br>$lb/ft^{2^*}$<br>$mm^*$                                                                        | Water Surface Slope Required for Entrainment of Largest ParticleRequired Bankfull Water Surface Slope (ft/ft) $S_r = \frac{\tau^*_{cl} \gamma_s D_i}{d}$ Stability: Degrading <b>diment Transport Validation - Bankfull Shear Stress</b> Hydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>3</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Predicted Shear Stress (lb/ft <sup>2</sup> ) Required To Move D <sub>i</sub> predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub> predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline. |

|                                  | :: 2006237.00<br>:: Little White                                                    | Dak Creek         Location: Polk County           Oak Creek         Reach: R2B XS# 1 Proposed (iteration 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | : 12/4/2006                                                                         | Observers: EMP TMB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Value                            | Variable                                                                            | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Turue                            |                                                                                     | Required Information for Entrainment Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 24.98                            | D <sub>50</sub> (mm)                                                                | D <sub>50</sub> from Riffle or Pavement <sup>#</sup> <sup>#</sup> Choose or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.86                             | D <sub>50</sub> (mm)                                                                | D <sub>50</sub> from Bar Sample or Subpavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 70                               | D <sub>i</sub> (mm)                                                                 | Largest Particle from Bar Sample or Pavement <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.230                            | D <sub>i</sub> (ft)                                                                 | Di (mm) / 304.8 (mm/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.012                            | S (ft/ft)                                                                           | Bankfull Water Surface Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.75                             | d (ft)                                                                              | Bankfull Mean Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7                                | $A (ft^2)$                                                                          | Bankfull Cross Sectional Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10.9                             | $W_{p}$ (ft)                                                                        | Wetted Perimeter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.65                             | γs                                                                                  | Submerged Specific Weight of Sediment (1.65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 62.4                             | $\gamma (lbs/ft^3)$                                                                 | Density of Water (62.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                  | (                                                                                   | Calculation of Critical Dimensionless Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5.14                             | $D_{50}/\hat{D_{50}}$                                                               | Range 3-7 Use Equation 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                  | <b>-</b>                                                                            | $\tau^{*}_{\ ci} = 0.0834 (D_{50}/\hat{D_{50}})^{-0.872}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.80                             | $D_i/D_{50}$                                                                        | Range 1.3-3.0 Use Equation 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  | 540                                                                                 | $\tau^*_{ci} = 0.0384 (D_i / \hat{D_{50}})^{-0.887}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.020                            | $\tau_{ci}^{*}$                                                                     | Critical Dimensionless Shear Stress Equation Used: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C                                | aculate Bank                                                                        | xfull Mean Depth Required for Entrainment of Largest Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.632                            | dr                                                                                  | Required Bankfull Mean Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                  |                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                  |                                                                                     | $d_r = \frac{\tau_{ci}^* \gamma_s D_i}{S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.187                            | d/d <sub>r</sub>                                                                    | Stability: Degrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calcu                            | late Bankfull                                                                       | 1 Water Surface Slope Required for Entrainment of Largest Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.010                            | Sr                                                                                  | Required Bankfull Water Surface Slope (ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  |                                                                                     | -* #D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                  |                                                                                     | $S_i = \frac{\tau_{i} \gamma_s D_i}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                  | _                                                                                   | $S_r = \frac{\tau_{ci}^* \gamma_s D_i}{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.187                            | S/S <sub>r</sub>                                                                    | $S_r = \frac{\tau_{ci}\gamma_s D_i}{d}$ Stability: Degrading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.187                            |                                                                                     | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.187<br>0.64                    |                                                                                     | Stability:     Degrading       diment Transport Validation - Bankfull Shear Stress       Hydraulic Radius (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                  | Sec                                                                                 | Stability:     Degrading       diment Transport Validation - Bankfull Shear Stress       Hydraulic Radius (ft) $R = A/W_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                  | Sec                                                                                 | Stability:Degradingdiment Transport Validation - Bankfull Shear StressHydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.64                             | R.                                                                                  | Stability:     Degrading       diment Transport Validation - Bankfull Shear Stress       Hydraulic Radius (ft) $R = A/W_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.64                             | R.                                                                                  | Stability:     Degrading       diment Transport Validation - Bankfull Shear Stress       Hydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.64<br>0.481                    | R<br>R<br>τ <sub>c</sub>                                                            | Stability:     Degrading       diment Transport Validation - Bankfull Shear Stress       Hydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.64<br>0.481                    | R<br>R<br>τ <sub>c</sub>                                                            | Stability:       Degrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.64<br>0.481                    | R<br>R<br>τ <sub>c</sub>                                                            | Stability:       Degrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.         Movable Particle Size (mm) At Bankfull Shear Stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.64<br>0.481<br>N<br>N/A        | R<br>R<br>τ <sub>c</sub><br>Y or N<br>mm <sup>*</sup>                               | Stability:Degradingdiment Transport Validation - Bankfull Shear StressHydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.64<br>0.481<br>N               | R<br>R<br>τ <sub>c</sub><br>Y or N                                                  | Stability:       Degrading         diment Transport Validation - Bankfull Shear Stress         Hydraulic Radius (ft)         R = $A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c =$ $\gamma RS$ Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.         Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.         Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub>                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.64<br>0.481<br>N<br>N/A        | R<br>R<br>τ <sub>c</sub><br>Y or N<br>mm <sup>*</sup>                               | Stability:Degradingdiment Transport Validation - Bankfull Shear StressHydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Predicted Shear Stress (lbs/ft <sup>2</sup> ) Required To Move D <sub>i</sub> predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.64<br>0.481<br>N<br>N/A        | R<br>R<br>τ <sub>c</sub><br>Y or N<br>mm <sup>*</sup>                               | Stability:Degradingdiment Transport Validation - Bankfull Shear StressHydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Movable Particle Size (mm) At Bankfull Shear Stressmovable Particle Size (mm) At Bankfull Shear StressMovable Particle Size (mm) At Bankfull Shear Stress                                                                                                                                                                                                                                                                                                                |
| 0.64<br>0.481<br>N<br>N/A<br>N/A | R<br>R<br>τ <sub>c</sub><br>Y or N<br>mm <sup>*</sup><br>lb/ft <sup>2*</sup>        | duringDegradingdiment Transport Validation - Bankfull Shear StressHydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline. |
| 0.64<br>0.481<br>N<br>N/A<br>N/A | $\frac{\text{Sec}}{\text{R}}$ $\tau_{c}$ $Y \text{ or } N$ $mm^{*}$ $lb/ft^{2^{*}}$ | Stability:Degradingdiment Transport Validation - Bankfull Shear StressHydraulic Radius (ft) $R = A/W_p$ Bankfull Shear Stress (lb/ft <sup>2</sup> ) $\tau_c = \gamma RS$ Is the Bed Material Homogeneous?Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.Movable Particle Size (mm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.Movable Particle Size (mm) At Bankfull Shear Stressmovable Particle Size (mm) At Bankfull Shear StressMovable Particle Size (mm) At Bankfull Shear Stress                                                                                                                                                                                                                                                                                                                |

#### Project: 2006237.00 Location: Polk County Stream: Little White Oak Creek Reach: R2B XS# 1 Proposed (iteration 3) Observers: EMP TMB Date: 12/4/2006 Variable Definition Value **Required Information for Entrainment Analysis** <sup>#</sup> Choose one D<sub>50</sub> from Riffle or Pavement<sup>#</sup> 24.98 D<sub>50</sub> (mm) $\hat{D}_{50}$ (mm) D<sub>50</sub> from Bar Sample or Subpavement<sup>#</sup> 4.86 Largest Particle from Bar Sample or Pavement<sup>#</sup> 70 $D_i$ (mm) Di (mm) / 304.8 (mm/ft) 0.230 D<sub>i</sub> (ft) 0.012 S (ft/ft) Bankfull Water Surface Slope 0.63 d (ft) Bankfull Mean Depth $A (ft^2)$ Bankfull Cross Sectional Area 5 W<sub>p</sub> (ft) Wetted Perimeter 9.16 1.65 Submerged Specific Weight of Sediment (1.65) Ys 62.4 $\gamma (lbs/ft)$ Density of Water (62.4) Calculation of Critical Dimensionless Shear Stress Use Equation 1: 5.14 $D_{50}/D_{50}$ Range 3-7 $\tau_{ci}^{*} = 0.0834 (D_{50}/D_{50})^{-0.872}$ $D_i/D_{50}$ Range 1.3-3.0 Use Equation 2: 2.80 $\tau^{*}_{ci} = 0.0384 (D_{i}/\dot{D_{50}})^{-0.887}$ τ<sub>ci</sub> Critical Dimensionless Shear Stress 1 0.020 Equation Used: Caculate Bankfull Mean Depth Required for Entrainment of Largest Particle Required Bankfull Mean Depth (ft) 0.632 d, $d_r = \frac{\tau_{ci}^* \gamma_s D_i}{S}$ 0.997 d/d, Stability: Aggrading Calculate Bankfull Water Surface Slope Required for Entrainment of Largest Particle Required Bankfull Water Surface Slope (ft/ft) 0.012 S, $S_r = \frac{\tau_{ci}^* \gamma_s D_i}{d}$ 0.997 S/S, Stability: Aggrading Sediment Transport Validation - Bankfull Shear Stress 0.55 Hydraulic Radius (ft) R R =A/Wn Bankfull Shear Stress (lb/ft<sup>2</sup>) 0.409 $\tau_c =$ yRS N Y or N Is the Bed Material Homogeneous? Determine from reach wide pebble count distribution. If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data. Movable Particle Size (mm) At Bankfull Shear Stress N/A mm predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> N/A lb/ft<sup>2\*</sup> predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Movable Particle Size (mm) At Bankfull Shear Stress 79 mm predicted by the Colorado Data Power-trendline. Predicted Shear Stress (lbs/ft<sup>2</sup>) Required To Move D<sub>i</sub> lb/ft<sup>2\*</sup> 0.348 predicted by the Colorado Data Power-trendline. Taken from The Reference Reach Field Book , 2005 by Rosgen and Silvey